Publications by authors named "Ryo Amano"

RNA aptamersare nucleic acids that are obtained using the systematic evolution of ligands by exponential enrichment (SELEX) method. When using conventional selection methods to immobilize target proteins on matrix beads using protein tags, sequences are obtained that bind not only to the target proteins but also to the protein tags and matrix beads. In this study, we performed SELEX using β-1,3-glucan recognition protein (GRP)-tags and curdlan beads to immobilize the acute myeloid leukaemia 1 (AML1) Runt domain (RD) and analysed the enrichment of aptamers using high-throughput sequencing.

View Article and Find Full Text PDF

Non-centrifugal cane sugar (NCS) is an unrefined dehydrated form of sugar syrup produced worldwide. To date, there is a lack of differentiation in the key nutrients and flavor qualities of NCS products among countries, which makes it difficult for interested parties to select NCSs suitable for their needs. This study aimed to evaluate the minerals and volatile organic components (VOCs) in NCS products from Japan and ASEAN countries.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play diverse roles in physiological processes, and hence the ligands to modulate GPCRs have served as important molecules in biological and pharmacological approaches. However, the exploration of novel ligands for GPCR still remains an arduous challenge. In this study, we report a method for the discovery of nucleic acid ligands against GPCRs by an advanced RNA aptamer screening technology that employs a virus-like particle (VLP), exposing the GPCR of interest.

View Article and Find Full Text PDF

Fibroblast growth factor 5 (FGF5) is a crucial regulator of hair growth and an oncogenic factor in several human cancers. To generate FGF5 inhibitors, we performed Systematic Evolution of Ligands by EXponential enrichment and obtained novel RNA aptamers that have high affinity to human FGF5. These aptamers inhibited FGF5-induced cell proliferation, but did not inhibit FGF2-induced cell proliferation.

View Article and Find Full Text PDF

Arginine-rich motifs (ARMs) bind RNA structures with high affinity and specificity, and the human immunodeficiency virus (HIV) exploits ARM-RNA interactions to regulate its lifecycle. The expression of HIV structural genes relies on recognition between the ARM of its Rev protein and its primary binding site, an internal loop in the viral RNA, the Rev-response element region IIB (IIB). Many functional variants of the Rev ARM-IIB interaction have been discovered, yet how easily it can evolve new specificities is poorly explored.

View Article and Find Full Text PDF

Recently created biophysical methods, such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), have been widely used to quantitatively study biomolecule interactions. The dissociation constant of the interaction with kinetic parameters, such as association rate constant and dissociation rate constant, can be obtained using SPR analysis. With thermodynamic parameters, such as enthalpy change and entropy change, the dissociation constant can be obtained by ITC analysis.

View Article and Find Full Text PDF

Aptamers are nucleic acid molecules that bind to a target molecule with high affinity and specificity, which are generated by a process known as systematic evolution of ligands by exponential enrichment (SELEX). Because of their high affinity and specificity, aptamers were developed as therapeutic agents. Although aptamers are investigated as promising therapeutic agents, the mechanism of their high affinity and specificity is not clear.

View Article and Find Full Text PDF

Aptamers are oligonucleotide ligands with specific binding affinity to target molecules. Generally, RNA aptamers are selected from an RNA pool with random sequences, using the technique termed SELEX, in which the target-binding RNA molecules are repeatedly isolated and exponentially amplified. Despite several advantages, SELEX often produces uncertain results during the iterative amplifications of the rare target-binding RNA molecules.

View Article and Find Full Text PDF

Since the invention of systematic evolution of ligands by exponential enrichment, many short oligonucleotides (or aptamers) have been reported that can bind to a wide range of target molecules with high affinity and specificity. Previously, we reported an RNA aptamer that shows high affinity to the Runt domain (RD) of the AML1 protein, a transcription factor with roles in haematopoiesis and immune function. From kinetic and thermodynamic studies, it was suggested that the aptamer recognises a large surface area of the RD, using numerous weak interactions.

View Article and Find Full Text PDF

To develop a high-affinity aptamer against AML1 Runt domain, two aptamers were conjugated based on their structural information. The newly designed aptamer Apt14 was generated by the conjugation of two RNA aptamers (Apt1 and Apt4) obtained by SELEX against AML1 Runt domain, resulting in improvement in its binding performance. The residues of AML1 Runt domain in contact with Apt14 were predicted in silico and confirmed by mutation and NMR analyses.

View Article and Find Full Text PDF

RNA aptamers are RNA molecules that bind to a target molecule with high affinity and specificity using uniquely-folded tertiary structures. RNA aptamers are selected from an RNA pool typically comprising up to 10 different sequences generated by iterative steps of selection and amplification known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Over several rounds of SELEX, the diversity of the RNA pool decreases and the aptamers are enriched.

View Article and Find Full Text PDF

Though polyamines (putrescine, spermidine, and spermine) bind to the specific position in RNA molecules, interaction mechanisms are poorly understood. SELEX procedure has been used to isolate high-affinity oligoribonucleotides (aptamers) from randomized RNA libraries. Selected aptamers are useful in exploring sequences and/or structures in RNAs for binding molecules.

View Article and Find Full Text PDF

AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes.

View Article and Find Full Text PDF

AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain.

View Article and Find Full Text PDF

Mineralization of aqueous alkylbenzenesulfonates (ABS) was investigated by means of contact glow discharge electrolysis (CGDE). Toluenesulfonic and dodecylbenzenesulfonic acids in a neutral phosphate buffer solution were smoothly degraded and eventually converted to inorganic carbon and sulfate ion when CGDE was conducted under the applied DC voltage of 500 V and current of ca. 90 mA.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbnt0g0j0aoj5jr6csc7l8mreqf1v6389): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once