Chalcones constitute an important group of natural compounds abundant in fruits and comestible plants. They are a subject of increasing interest because of their biological activities, including anti-diabetic and anti-obesity effects. The simple chalcone structural scaffold can be modified at multiple sites with different chemical moieties.
View Article and Find Full Text PDFMicroglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals.
View Article and Find Full Text PDFThe avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells.
View Article and Find Full Text PDFThe metabolic syndrome, which comprises obesity and diabetes, is a major public health problem and the awareness of energy homeostasis control remains an important worldwide issue. The energy balance is finely regulated by the central nervous system (CNS), notably through neuronal networks, located in the hypothalamus and the dorsal vagal complex (DVC), which integrate nutritional, humoral and nervous information from the periphery. The glial cells' contribution to these processes emerged few year ago.
View Article and Find Full Text PDFThe ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication.
View Article and Find Full Text PDFPACAP-38 (P38) is a pleiotropic peptide that exerts multiple peripheral and central actions, including neurotrophic, neuroprotective and anti-inflammatory actions. Previous studies have suggested an improvement of memory in rats that have received a single systemic injection of P38. In a therapeutic perspective, we used an analog, acetyl-[Ala, Ala]PACAP-38-propylamide (ALG), to improve both stability and affinity for PAC1 receptors vs.
View Article and Find Full Text PDFWe compared the effects of single intraveinous injection of pituitary adenylate cyclase-activating polypeptide-38 (P38) to those of its analog, acetyl-[Ala, Ala]PACAP-38-propylamide (P38-alg) on spatial memory in the Morris water maze (MWM) using a weak massed-learning procedure, post-training brain derived neurotrophic factor (BDNF) and post-training oxidative stress biomarker assays in male Wistar rats. Acquisition of the MWM task following P38 (30 μg/kg) and P38-alg (30 μg/kg) treatments was similar to control group (Saline: 0.9% NaCl) and there was no interaction between treatments and performance.
View Article and Find Full Text PDFChronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity.
View Article and Find Full Text PDFEndozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status.
View Article and Find Full Text PDFScope: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms.
View Article and Find Full Text PDFThe cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets.
View Article and Find Full Text PDFDisulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides.
View Article and Find Full Text PDFAntioxid Redox Signal
August 2007
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes.
View Article and Find Full Text PDFThe capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry.
View Article and Find Full Text PDFConformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain.
View Article and Find Full Text PDFThe human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required.
View Article and Find Full Text PDF1-Deoxynojirimycin (DNM) is a saccharide decoy that inhibits cellular alpha-glucosidase I-II activity. Treatment by DNM of human immunodeficiency virus (HIV)-infected lymphocyte cultures inhibits virus spread. The functional properties of the membrane-associated Env glycoprotein (Env) modified in the presence of DNM remain unclear because previous reports on this subject have essentially used recombinant soluble Envs whose properties differ notably from those of Env anchored on the surface of the virus.
View Article and Find Full Text PDF