Early virus identification is a key component of both patient treatment and epidemiological monitoring. In the case of influenza A virus infections, where the detection of subtypes associated with bird flu in humans could lead to a pandemic, rapid subtype-level identification is important. Surface-enhanced Raman spectroscopy coupled with machine learning can be used to rapidly detect and identify viruses in a label-free manner.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2022
Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device, coupled with label-free Raman spectroscopy, holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning (ML) approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such an ML approach for analyzing Raman spectra of human and avian viruses.
View Article and Find Full Text PDFObjective: To predict the histologic grade and type of small papillary renal cell carcinomas (pRCCs) using texture analysis and machine learning algorithms.
Methods: This was a retrospective HIPAA-compliant study. 24 noncontrast (NC), 22 corticomedullary (CM) phase, and 24 nephrographic (NG) phase CTs of small (< 4 cm) surgically resected pRCCs were identified.