This study utilized digital PCR to quantify HBV RNA and HBV DNA within three regions of the HBV genome. Analysis of 75 serum samples from patients with chronic infection showed that HBV RNA levels were higher in core than in S and X regions (median 7.20 vs.
View Article and Find Full Text PDFBackground: Hepatitis B virus (HBV) DNA may become integrated into the human genome of infected human hepatocytes. Expression of integrations can produce the surface antigen (HBsAg) that is required for synthesis of hepatitis D virus (HDV) particles and the abundant subviral particles in the blood of HBV- and HDV-infected subjects. Knowledge about the extent and variation of HBV integrations and impact on chronic HDV is still limited.
View Article and Find Full Text PDFDetailed knowledge regarding norovirus transmission within hospitals is limited. We investigated a norovirus hospital outbreak affecting 65 patients at five different wards. PCR showed that 61 (94%) of the patients were infected with genotype II.
View Article and Find Full Text PDFHepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles.
View Article and Find Full Text PDFAdenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.
View Article and Find Full Text PDFHepatitis B virus (HBV) DNA and RNA were quantified by digital PCR assays in 20-30 tissue pieces from each of 4 liver explants with cirrhosis caused by HBV. The within-patient variability of HBV RNA levels between pieces was up to a 1000-fold. Core RNA and S RNA levels were similar and correlated strongly when replication was high, supporting that transcription was from covalently closed circular DNA (cccDNA).
View Article and Find Full Text PDFThe objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry.
View Article and Find Full Text PDFBackground: Hepatitis B virus (HBV) integration has implications for cancer development and surface antigen (HBsAg) production, but methods to quantify integrations are lacking. The aim of this study was to develop a droplet digital PCR (ddPCR) assay discriminating between circular and integrated HBV DNA, and to relate the distribution between the two forms to other HBV markers.
Methods: ddPCR with primers spanning the typical linearization breakpoint in the HBV genome allowed for quantification of the absolute copy numbers of total and circular HBV DNA, and calculation of linear HBV DNA.
Replication of hepatitis B virus (HBV) originates from covalently closed circular DNA (cccDNA) and involves reverse transcription of pregenomic RNA (pgRNA), which is also called core RNA and encodes the capsid protein. The RNA coding for hepatitis B surface antigen (HBsAg) in the envelope of viral or subviral particles is produced from cccDNA or from HBV DNA integrated into the host genome. Because only cccDNA can generate the core and the 3' redundancy regions of HBV RNA, we aimed to clarify to what extent such HBV integrations are expressed by quantifying the different HBV RNA species in liver tissue.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Integration of HBV DNA into the human genome may contribute to oncogenesis and to the production of the hepatitis B surface antigen (HBsAg). Whether integrations contribute to HBsAg levels in the blood is poorly known.
View Article and Find Full Text PDFVirus internalization into the host cells occurs via multivalent interactions, in which a single virus binds to multiple receptors in parallel. Because of analytical and experimental limitations this complex type of interaction is still poorly understood and quantified. Herein, the multivalent interaction of norovirus-like particles (noroVLPs) with H or B type 1 glycosphingolipids (GSLs), embedded in a supported phospholipid bilayer, is investigated by following the competition between noroVLPs and a lectin (from ) upon binding to these GSLs.
View Article and Find Full Text PDFBackground: Hepatocytes infected by hepatitis B virus (HBV) produce different HBV RNA species, including pregenomic RNA (pgRNA), which is reverse transcribed during replication. Particles containing HBV RNA are present in serum of infected individuals, and quantification of this HBV RNA could be clinically useful.
Methods: In a retrospective study of 95 patients with chronic HBV infection, we characterised HBV RNA in serum in terms of concentration, particle association and sequence.
Quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy have been used to investigate binding of norovirus-like particles (noroVLPs) to a supported (phospho)lipid bilayer (SLB) containing a few percent of H or B type 1 glycosphingolipid (GSL) receptors. Although neither of these GSLs spontaneously form domains, noroVLPs were observed to form micron-sized clusters containing typically up to about 30 VLP copies, especially for B type 1, which is a higher-affinity receptor. This novel finding is explained by proposing a model implying that VLP-induced membrane deformation promotes VLP clustering, a hypothesis that was further supported by observing that functionalized gold nanoparticles were able to locally induce SLB deformation.
View Article and Find Full Text PDFA hallmark of hepatitis B virus (HBV) infection is the presence of hepatitis B surface antigen (HBsAg) in the serum of patients. Sustained loss of HBV DNA and HBsAg from the blood are main goals for treatment, and considered as functional cure. It is rarely achieved with long-term nucleoside analogue treatment though, both because cccDNA, the template for viral replication, is not completely cleared, and probably also because hepatocytes with HBV DNA integrated into their chromosomes persist and continue to produce large amounts of HBsAg.
View Article and Find Full Text PDFDuring hepatitis B virus (HBV) infections subviral particles (SVP) consisting mainly of hepatitis B surface antigen are present at much higher concentration than viral particles (VP) in serum. To investigate reasons for this excess of SVP production, SVP and VP were fractionated on a Nycodenz gradient and analyzed for HBV infection of HepG2-NTCP cells with and without anti-HBs antibodies. Our findings showed that SVP significantly reduced the neutralization of VP by anti-HBs, while SVP had little effect on viral entry, supporting the assumption that SVP serve as decoy facilitating cell-to-cell spread of HBV in the presence of neutralizing antibodies.
View Article and Find Full Text PDFMultivalent receptor-mediated interactions between virions and a lipid membrane can be weakened using competitive nonpathogenic ligand binding. In particular, the subsequent binding of such ligands can induce detachment of bound virions, a phenomenon of crucial relevance for the development of new antiviral drugs. Focusing on the simian virus 40 (SV40) and recombinant cholera toxin B subunit (rCTB), and using (monosialotetrahexosyl)ganglioside (GM1) as their common receptor in a supported lipid bilayer (SLB), we present the first detailed investigation of this phenomenon by employing the quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy assisted 2D single particle tracking (SPT) techniques.
View Article and Find Full Text PDFGlycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake.
View Article and Find Full Text PDFStudies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics.
View Article and Find Full Text PDFSeveral exogenous and endogenous cargo proteins are internalized independently of clathrin, including the bacterial Shiga toxin. The mechanisms underlying early steps of clathrin-independent uptake remain largely unknown. In this study, we have designed a protocol to obtain gradient fractions containing Shiga toxin internalization intermediates.
View Article and Find Full Text PDFNorovirus is a non-enveloped virus causing acute gastroenteritis. For human norovirus, no simple cell culture system is available and consequently knowledge on cellular entry of the virus is limited. The virus binds to ABH histo-blood group glycans on glycoproteins and glycosphingolipids.
View Article and Find Full Text PDFNorovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200,000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections.
View Article and Find Full Text PDFNorovirus strains are known to cause recurring epidemics of winter vomiting disease. The crystal structure of the capsid protein of VA387, a representative of the clinically important GII.4 genocluster, was recently solved in complex with histo-blood group A- and B-trisaccharides.
View Article and Find Full Text PDF