Publications by authors named "Ryckman D"

Invasive Pulmonary Aspergillosis (IPA) and Pneumonia (PCP) are serious fungal pulmonary diseases for immunocompromised patients. The brand name drug CANCIDAS (Caspofungin acetate for injection) is FDA approved to treat IPA, but is only 40% effective. Efficacious drug levels at the lung infection site are not achieved by systemic administration.

View Article and Find Full Text PDF

Aspergillosis is a serious fungal lung infection caused by . and is often fatal in immunocompromised patients. Current antifungal drug treatment and delivery results in modest efficacy in these patients may be due to low drug distribution to the lung.

View Article and Find Full Text PDF

Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling.

View Article and Find Full Text PDF

Accelerated proliferation of solid tumor and hematologic cancer cells is linked to accelerated transcription of rDNA by the RNA polymerase I (Pol I) enzyme to produce elevated levels of rRNA (rRNA). Indeed, upregulation of Pol I, frequently caused by mutational alterations among tumor suppressors and oncogenes, is required for maintenance of the cancer phenotype and forms the basis for seeking selective inhibitors of Pol I as anticancer therapeutics. 2-(4-Methyl-[1,4]diazepan-1-yl)-5-oxo-5H-7-thia-1,11b-diaza-benzo[c]fluorene-6-carboxylic acid (5-methyl-pyrazin-2-ylmethyl)-amide (CX-5461, 7c) has been identified as the first potent, selective, and orally bioavailable inhibitor of RNA Pol I transcription with in vivo activity in tumor growth efficacy models.

View Article and Find Full Text PDF

A novel family of potent dual inhibitors of CK2 and the Pim kinases was discovered by modifying the scaffolds of tricyclic Pim inhibitors. Several analogs were active at single digit nanomolar IC(50) values against CK2 and the Pim isoforms Pim-1 and Pim-2. The molecules displayed antiproliferative activity in various cell phenotypes in the low micromolar and submicromolar range, providing an excellent starting point for further drug discovery optimization.

View Article and Find Full Text PDF

Ser/Thr protein kinase CK2 regulates multiple processes that play important roles in the sensitivity of cancer to epidermal growth factor receptor targeting therapeutics, including PI3K-Akt-mTOR signaling, Hsp90 activity, and inhibition of apoptosis. We hypothesized that top-down inhibition of EGFR, combined with lateral suppression of multiple oncogenic pathways by targeting CK2, would create a pharmacologic synthetic lethal event and result in an improved cancer therapy compared to EGFR inhibition alone. This hypothesis was tested by combining CX-4945, a first-in-class clinical stage inhibitor of CK2, with the EGFR tyrosine kinase inhibitor, erlotinib, in vitro and in vivo in models of non-small cell lung carcinoma, NCI-H2170, and squamous cell carcinoma, A431.

View Article and Find Full Text PDF

Structure-activity relationship analysis in a series of 3-(5-((2-oxoindolin-3-ylidene)methyl)furan-2-yl)amides identified compound 13, a pan-Pim kinases inhibitor with excellent biochemical potency and kinase selectivity. Compound 13 exhibited in vitro synergy with chemotherapeutics and robust in vivo efficacy in two Pim kinases driven tumor models.

View Article and Find Full Text PDF

Drug combination therapies are commonly used for the treatment of cancers to increase therapeutic efficacy, reduce toxicity, and decrease the incidence of drug resistance. Although drug combination therapies were originally devised primarily by empirical methods, the increased understanding of drug mechanisms and the pathways they modulate provides a unique opportunity to design combinations that are based on mechanistic rationale. We have identified protein kinase CK2 as a promising therapeutic target for combination therapy, because CK2 regulates not just one but many oncogenic pathways and processes that play important roles in drug resistance, including DNA repair, epidermal growth factor receptor signaling, PI3K/AKT/mTOR signaling, Hsp90 machinery activity, hypoxia, and interleukin-6 expression.

View Article and Find Full Text PDF

Protein kinase CK2 is a potential drug target for many diseases including cancer and inflammation disorders. The crystal structure of clinical candidate CX-4945 1 with CK2 revealed an indirect interaction with the protein through hydrogen bonding between the NH of the 3-chlorophenyl amine and a water molecule. Herein, we investigate the relevance of this hydrogen bond by preparing several novel tricyclic derivatives lacking a NH moiety at the same position.

View Article and Find Full Text PDF

Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized.

View Article and Find Full Text PDF

A novel class of pan-Pim kinase inhibitors was designed by modifying the CK2 inhibitor CX-4945. Introduction of a triazole or secondary amide functionality on the C-7 position and 2'-halogenoanilines on C-5 resulted in potent inhibitors of the Pim-1 and Pim-2 isoforms, with many analogs active at single digit nanomolar concentrations. The molecules inhibited the phosphorylation at Serine 112 of the apoptosis effector BAD, and had potent antiproliferative effects on the AML cell line MV-4-11 (IC(50) <30 nM).

View Article and Find Full Text PDF

5-(3-Chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, is representative of a new class of CK2 inhibitors with K(i) values in the low nanomolar range and unprecedented selectivity versus other kinases. Here we present the crystal structure of the complexes of CX-4945 and two analogues (CX-5011 and CX-5279) with the catalytic subunit of human CK2. Consistent with their ATP-competitive mode of inhibition, all three compounds bind in the active site of CK2 (type I inhibitors).

View Article and Find Full Text PDF

In this article we describe the preclinical characterization of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first orally available small molecule inhibitor of protein CK2 in clinical trials for cancer. CX-4945 was optimized as an ATP-competitive inhibitor of the CK2 holoenzyme (Ki = 0.38 nM).

View Article and Find Full Text PDF

We describe the discovery of novel potent substituted pyrimido[4,5-c]quinoline ATP-competitive inhibitors of protein kinase CK2. A binding model of the inhibitors with the protein was elaborated on the basis of SAR and revealed various modes of interaction with the hinge region. Representative analog 14k (CK2 IC(50)=9 nM) showed anti-viral activity at nanomolar concentrations against HIV-1.

View Article and Find Full Text PDF

Herein we chronicle the discovery of CX-4945 (25n), a first-in-class, orally bioavailable ATP-competitive inhibitor of protein kinase CK2 in clinical trials for cancer. CK2 has long been considered a prime cancer drug target because of the roles of deregulated and overexpressed CK2 in cancer-promoting prosurvival and antiapoptotic pathways. These biological properties as well as the suitability of CK2's small ATP binding site for the design of selective inhibitors, led us to fashion novel therapeutic agents for cancer.

View Article and Find Full Text PDF

Deregulated ribosomal RNA synthesis is associated with uncontrolled cancer cell proliferation. RNA polymerase (Pol) I, the multiprotein complex that synthesizes rRNA, is activated widely in cancer. Thus, selective inhibitors of Pol I may offer a general therapeutic strategy to block cancer cell proliferation.

View Article and Find Full Text PDF

Malignant transformation and maintenance of the malignant phenotype depends on oncogenic and non-oncogenic proteins that are essential to mediate oncogene signaling and to support the altered physiologic demands induced by transformation. Protein kinase CK2 supports key prosurvival signaling pathways and represents a prototypical non-oncogene. In this study, we describe CX-4945, a potent and selective orally bioavailable small molecule inhibitor of CK2.

View Article and Find Full Text PDF

In an H&HN exclusive roundtable discussion, representatives from the five top-performing hospitals describe what they've learned so far from the Premier/CMS Pay-for-Performance Project. For hospitals around the country, so-called value-based ent will soon be the primary way they get paid by both public and commercial insurers. The Premier/CMS participants offer valuable insights--and warnings--about the challenges ahead.

View Article and Find Full Text PDF

A fluoroquinolone prodrug, PA2808, was prepared and shown to convert to the highly active parent drug PA2789. In vitro and in vivo activation of PA2808 by alkaline phosphatase was demonstrated using disk diffusion and rat lung infection models. The water solubility of PA2808 showed a marked increase compared to PA2789 over a pH range suitable for aerosol drug delivery.

View Article and Find Full Text PDF

A current priority for the preservation of the endangered red wolf (Canis rufus) is the development of a sperm-based genome resource bank. The aims of this study were to examine the effects of (i) holding temperature on the motility of spermatozoa over time, and (ii) cooling methods on the characteristics of spermatozoa after cooling and cryopreservation. Electroejaculates (n = 11; fresh) were evaluated for the percentage of motile spermatozoa, cell and acrosome morphology (Spermac (Meditech 1st Canada Inc, Montreal, Ontario) and fluorescein isothiocyanate-labelled Pisum sativum agglutinin lectin (PSA/FITC; Sigma Diagnostics, Oakville, Ontario) staining), and zona penetration.

View Article and Find Full Text PDF

Two strategies were developed to synthesize the acylated cyclic peptides know as polymyxins. Synthesis of polymyxin E1 and several analogs enabled us to evaluate the minimum inhibitory concentration of individual compounds against Gram-negative bacteria. In this study we also report the first identification of two component peptides in the complex polymyxin fermentation product colistin, a Thr2Ser isoform and an acyl group isomer.

View Article and Find Full Text PDF

Recent advances in feline and canine reproductive studies demonstrate how methodically piecing this information together is beginning to reap rewards for wildlife conservation programs. Non-invasive endocrinology can be used to monitor female reproductive function, time con-specific introductions or AI, and diagnose pregnancy. Sperm morphology characteristics and cell membrane function may be genetically inherited and differ between genetically diverse and inbred species/populations in felids.

View Article and Find Full Text PDF

Since 1971, the herring gull (Larus argentatus) has been used as a sentinel species for monitoring the levels of persistent contaminants in the Great Lakes ecosystem. In this study, 21 herring gull colonies in the Great Lakes and connecting channels were sampled during 1972-1976, 1981-1983, 1985 and 1992. For each year, 10 eggs (usually) were collected from each colony site and analyzed for total mercury (microg/g, wet wt).

View Article and Find Full Text PDF