We have combined scanning tunneling microscopy with inelastic electron tunneling spectroscopy (IETS) and density functional theory (DFT) to study a tetracyanoethylene monolayer on Ag(100). Images show that the molecules arrange in locally ordered patterns with three nonequivalent, but undeterminable, adsorption sites. While scanning tunneling spectroscopy only shows subtle variations of the local electronic structure at the three different positions, we find that vibrational modes are very sensitive to the local atomic environment.
View Article and Find Full Text PDFBipolar molecules incorporating donor and acceptor components within a single molecule create exciting device opportunities due to their possible use as nanoscale p-n heterojunctions. Here we report a direct characterization of the internal electronic structure of a single bipolar molecular heterojunction, including subnanometer features of the intramolecular donor-acceptor interface. Angstrom-resolved scanning tunneling spectroscopy was used to map the energy levels and spatial extent of molecular orbitals across the surface of an individual bipolar molecule, bithiophene naphthalene diimide (BND).
View Article and Find Full Text PDFWe have fabricated hybrid magnetic complexes from V atoms and tetracyanoethylene ligands via atomic manipulation with a cryogenic scanning tunneling microscope. Using tunneling spectroscopy we observe spin-polarized molecular orbitals as well as Kondo behavior. For complexes having two V atoms, the Kondo behavior can be quenched for different molecular arrangements, even as the spin-polarized orbitals remain unchanged.
View Article and Find Full Text PDFC60 fullerides are uniquely flexible molecular materials that exhibit a rich variety of behaviour, including superconductivity and magnetism in bulk compounds, novel electronic and orientational phases in thin films and quantum transport in a single-C60 transistor. The complexity of fulleride properties stems from the existence of many competing interactions, such as electron-electron correlations, electron-vibration coupling and intermolecular hopping. The exact role of each interaction is controversial owing to the difficulty of experimentally isolating the effects of a single interaction in the intricate fulleride materials.
View Article and Find Full Text PDFWe have studied the structural and electronic properties of tetracyanoethylene (TCNE) molecules on different noble-metal surfaces using scanning tunneling spectroscopy and density functional theory. Striking differences are observed in the TCNE behavior on Au, Ag, and Cu substrates in the submonolayer limit. We explain our findings by a combination of charge-transfer and lattice-matching properties for TCNE across substrates that results in a strong variation of molecule-molecule and molecule-substrate interactions.
View Article and Find Full Text PDFDiamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic bandgaps, optical properties, thermal transport and mechanical strength at the nanoscale. The recently discovered higher diamondoids have thus generated much excitement in regards to their potential versatility as nanoscale devices.
View Article and Find Full Text PDF