Publications by authors named "Ryan Wuebbles"

Asthma is a chronic inflammatory disorder of the lower airways characterized by modulation of airway smooth muscle (ASM) function. Infiltration of smooth muscle by inflammatory mediators is partially regulated by transmembrane integrins and the major smooth muscle laminin receptor α7β1 integrin plays a critical role in the maintenance of ASM phenotype. The goal of the current study was to investigate the role of α7 integrin in asthma using smooth muscle-specific α7 integrin transgenic mice (TgSM-Itgα7) using both acute and chronic OVA sensitization and challenge protocols that mimic mild to severe asthmatic phenotypes.

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a rare genetic muscle disorder leading to progressive muscle loss over time. Research indicates that this progressive muscular atrophy can negatively impact spatio-temporal gait characteristics, but this is not always the case during early-onset or mild cases of the disease. In addition, the performance of a secondary task during overground walking may elucidate greater deficits in spatio-temporal characteristics of gait.

View Article and Find Full Text PDF

Smartphone applications are increasingly being used to measure gait due to their portability and cost-effectiveness. Important reliability metrics are not available for most of these devices. The purpose of this article was to evaluate the test-retest reliability and concurrent validity of spatiotemporal gait using the novel Gait Analyzer smartphone application compared to the Tekscan Strideway.

View Article and Find Full Text PDF

Background: All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant activation of the somatically silent DUX4 gene, the expression of which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many individuals who are genetically FSHD but develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, FSHD may clinically present prior to 5-10 years of age, ultimately manifesting as a severe early-onset form of the disease.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a devastating X-linked disease affecting ~1 in 5000 males. DMD patients exhibit progressive muscle degeneration and weakness, leading to loss of ambulation and premature death from cardiopulmonary failure. We previously reported that mouse Laminin-111 (msLam-111) protein could reduce muscle pathology and improve muscle function in the mdx mouse model for DMD.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in the dystrophin gene that result in the complete absence of dystrophin protein. We have shown previously that recombinant mouse Galectin-1 treatment improves physiological and histological outcome measures in the mouse model of DMD. Because recombinant human Galectin-1 (rHsGal1) will be used to treat DMD patients, we performed a dose-ranging study and intraperitoneal or intravenous delivery to determine the efficacy of rHsGal1 to improve preclinical outcome measures in mice.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage.

View Article and Find Full Text PDF

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the dystrophin gene, leading to the loss of a critical component of the sarcolemmal dystrophin glycoprotein complex. Galectin-1 is a small 14 kDa protein normally found in skeletal muscle and has been shown to be a modifier of immune response, muscle repair, and apoptosis. Galectin-1 levels are elevated in the muscle of mouse and dog models of DMD.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear.

View Article and Find Full Text PDF

MG53 promotes sarcolemmal repair in the mdx mouse model of Duchenne muscular dystrophy (Weisleder et al., this issue) and identifies a new protein therapeutic for muscle disease.

View Article and Find Full Text PDF

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A.

View Article and Find Full Text PDF

Merosin-deficient congenital muscular dystrophy 1A (MDC1A) is a devastating neuromuscular disease that results in children being confined to a wheelchair, requiring ventilator assistance to breathe and premature death. MDC1A is caused by mutations in the LAMA2 gene, which results in the partial or complete loss of laminin-211 and laminin-221, the major laminin isoforms found in the basal lamina of skeletal muscle. MDC1A patients exhibit reduced α7β1 integrin; however, it is unclear how the secondary loss of α7β1 integrin contributes to MDC1A disease progression.

View Article and Find Full Text PDF

The genetic lesion leading to facioscapulohumeral muscular dystrophy (FSHD) is a dominant deletion at the 4q35 locus. The generally accepted disease model involves an epigenetic dysregulation in the region resulting in the upregulation of one or more proximal genes whose overexpression specifically affects skeletal muscle. However, multiple FSHD candidate genes have been proposed without clear consensus.

View Article and Find Full Text PDF

The genetic lesion that is diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate for a gene whose misexpression might lead to FSHD. Because FSHD pathology is most prominent in the musculature, most research and therapy efforts focus on muscle cells.

View Article and Find Full Text PDF

The leading candidate gene responsible for facioscapulohumeral muscular dystrophy (FSHD) is FRG1 (FSHD region gene 1). However, the correlation of altered FRG1 expression levels with disease pathology has remained controversial and the precise function of FRG1 is unknown. Here, we carried out a detailed analysis of the normal expression patterns and effects of FRG1 misexpression during vertebrate embryonic development using Xenopus laevis.

View Article and Find Full Text PDF

The expanding roles of telomeres in epigenetic gene regulation, nuclear organization, and human disease have necessitated the establishment of model organisms in which to study telomere function under normal developmental conditions. We present an efficient system for generating numerous vertebrate animals containing engineered telomeres using a Xenopus laevis transgenesis technique. Our results indicate Xenopus zygotes efficiently recognize telomeric repeats at chromosome break points and form telomeric complexes thus generating a new telomere.

View Article and Find Full Text PDF