Publications by authors named "Ryan W Kung"

DNA is damaged through various exogenous sources (e.g., automobile exhaust, tobacco smoke, and processed foods), which can yield diverse C8-dG bulky aryl adducts.

View Article and Find Full Text PDF

Exposure of humans to carcinogenic aromatic amines (AAs) occurs daily. AAs are bioactivated in cells into products that attack DNA, primarily leading to N-linked C8-dG adducts. Previous work on DNA containing a single AA-derived adduct (monoadducted DNA) has shown a structure-function relationship between the damaged DNA conformation and cellular outcomes.

View Article and Find Full Text PDF

Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed -(deoxyguanosin-8-yl)-aniline (dG) or the mutagenic four-ringed -(deoxyguanosin-8-yl)-1-aminopyrene (dG) lesion at G, G, or G in the AA deletion hotspot (5'-GGCGCC) in the or glycosidic orientation (B/S duplex conformation).

View Article and Find Full Text PDF

A set of >300 nonredundant high-resolution RNA-protein complexes were rigorously searched for π-contacts between an amino acid side chain (W, H, F, Y, R, E and D) and an RNA nucleobase (denoted π-π interaction) or ribose moiety (denoted sugar-π). The resulting dataset of >1500 RNA-protein π-contacts were visually inspected and classified based on the interaction type, and amino acids and RNA components involved. More than 80% of structures searched contained at least one RNA-protein π-interaction, with π-π contacts making up 59% of the identified interactions.

View Article and Find Full Text PDF

Nitroaromatic compounds represent a major class of industrial chemicals that are also found in nature. Polycyclic derivatives are regarded as potent mutagens and carcinogens following bioactivation to produce nitrenium electrophiles that covalently modify DNA to afford N-linked C8-2'-deoxyguanosine (C8-dG) lesions that can induce frameshift mutations, especially in CpG repeat sequences. In contrast, their monocyclic counterparts typically exhibit weak mutagenicity or a lack thereof, despite also undergoing bioactivation to afford N-linked C8-dG adducts.

View Article and Find Full Text PDF

The present work investigates the effects of the size and shape of the nitrogen-containing aromatic (NCA) skeleton on the structure of DNA damaged through adduct formation at C of 2'-deoxyguanosine (dG), a common DNA lesion associated with chemical carcinogenesis. Specifically, density functional theory (DFT) calculations (B3LYP-D3) and molecular dynamics (MD) simulations (AMBER) are performed on seven model adducts with systematic expansion of the NCA moiety. DFT calculations reveal that the NCA moiety shape affects the structure at the nucleobase-carcinogen linkage.

View Article and Find Full Text PDF

Aromatic chemical carcinogens can undergo enzymatic transformations to produce a range of electrophilic species that attach covalently to the C8-site of 2'-deoxyguanosine (dG) to afford C8-dG adducts. The most studied C8-dG adducts are formed from arylamines and contain a N-linkage separating the dG from the C8-aryl moiety. Other carcinogenic species result in direct aryl ring attachment to the dG moiety, resulting in C-linked adducts.

View Article and Find Full Text PDF

There were 1765 contacts identified between DNA nucleobases or deoxyribose and cyclic (W, H, F, Y) or acyclic (R, E, D) amino acids in 672 X-ray structures of DNA-protein complexes. In this first study to compare π-interactions between the cyclic and acyclic amino acids, visual inspection was used to categorize amino acid interactions as nucleobase π-π (according to biological edge) or deoxyribose sugar-π (according to sugar edge). Overall, 54% of contacts are nucleobase π-π interactions, which involve all amino acids, but are more common for Y, F, and R, and involve all DNA nucleobases with similar frequencies.

View Article and Find Full Text PDF