Publications by authors named "Ryan W Carlin"

Experiments were conducted to characterize the effects of oxytocin (OT) and vasopressin (VP) on epithelial cells isolated from human (1 degree HVD) and porcine (1 degree PVD) vas deferens and an immortalized epithelial cell line derived from porcine vas deferens (PVD9902 cells). Cultured monolayers were assessed in modified Ussing flux chambers and the OT- or VP-induced change in short circuit current (I(SC)) was recorded. All cell types responded to basolateral OT or VP with a transient increase in I(SC) that reached a peak of 3-5 microA cm(-2).

View Article and Find Full Text PDF

Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902.

View Article and Find Full Text PDF

Experiments were conducted to determine the responsiveness of human vas deferens epithelial cell monolayers to adenosine and related agonists. Human abdominal vas deferens epithelial cells have been isolated from adult tissues and grown to confluence on permeable supports. All cells exhibit intense ZO-1 and cytokeratin immunoreactivity.

View Article and Find Full Text PDF

This study focused on the role of sodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated ion transport in porcine vas deferens epithelium. Ion substitution experiments in modified Ussing chambers revealed that cAMP-mediated stimulation was dependent on the presence of Na(+), HCO, and Cl(-) for a full response. HCO-dependent current was unaffected by acetazolamide, bumetanide, or amiloride but was inhibited by basolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid.

View Article and Find Full Text PDF

Sensory and ganglion cells in the tentacle epidermis of the sea anemone Aiptasia pallida were traced in serial transmission electron micrographs to their synaptic contacts on other cells. Sensory cell synapses were found on spirocytes, muscle cells, and ganglion cells. Ganglion cells, in turn, synapsed on sensory cells, spirocytes, muscle cells, and other neurons and formed en passant axo-axonal synapses.

View Article and Find Full Text PDF