Publications by authors named "Ryan V Mishmash"

Quantum computers promise to solve certain computational problems much faster than classical computers. However, current quantum processors are limited by their modest size and appreciable error rates. Recent efforts to demonstrate quantum speedups have therefore focused on problems that are both classically hard and naturally suited to current quantum hardware, such as sampling from complicated-although not explicitly useful-probability distributions.

View Article and Find Full Text PDF

The performance of computational methods for many-body physics and chemistry is strongly dependent on the choice of the basis used to formulate the problem. Hence, the search for similarity transformations that yield better bases is important for progress in the field. So far, tools from theoretical quantum information have not been thoroughly explored for this task.

View Article and Find Full Text PDF

We propose a novel quantum spin liquid state that can explain many of the intriguing experimental properties of the low-temperature phase of the organic spin liquid candidate materials κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2. This state of paired fermionic spinons preserves all symmetries of the system, and it has a gapless excitation spectrum with quadratic bands that touch at momentum k[over →]=0. This quadratic band touching is protected by symmetries.

View Article and Find Full Text PDF

Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit 'strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself.

View Article and Find Full Text PDF

We present evidence for an exotic gapless insulating phase of hard-core bosons on multileg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless modes and power law transverse density correlations at incommensurate wave vectors.

View Article and Find Full Text PDF