Background: Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically optimize the catheter placement for rhenium-186 (Re)-nanoliposomes (RNL) delivery to treat recurrent glioblastoma (rGBM).
Methods: The model consists of the 1) fluid fields generated via catheter infusion, 2) dynamic transport of RNL, and 3) transforming RNL concentration to the SPECT signal.
Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern.
View Article and Find Full Text PDFDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to noninvasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties.
View Article and Find Full Text PDFCompartment models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern.
View Article and Find Full Text PDFBackground: Dynamic contrast-enhanced MRI (DCE-MRI) parameters have been shown to be biomarkers for treatment response in glioblastoma (GBM). However, variations in analysis and measurement methodology complicate determination of biological changes measured via DCE. The aim of this study is to quantify DCE-MRI variations attributable to analysis methodology and image quality in GBM patients.
View Article and Find Full Text PDFConvection-enhanced delivery of rhenium-186 (Re)-nanoliposomes is a promising approach to provide precise delivery of large localized doses of radiation for patients with recurrent glioblastoma multiforme. Current approaches for treatment planning utilizing convection-enhanced delivery are designed for small molecule drugs and not for larger particles such asRe-nanoliposomes. To enable the treatment planning forRe-nanoliposomes delivery, we have developed a computational fluid dynamics approach to predict the distribution of nanoliposomes for individual patients.
View Article and Find Full Text PDFTumor associated angiogenesis is the development of new blood vessels in response to proteins secreted by tumor cells. These new blood vessels allow tumors to continue to grow beyond what the pre-existing vasculature could support. Here, we construct a mathematical model to simulate tumor angiogenesis by considering each endothelial cell as an agent, and allowing the vascular endothelial growth factor (VEGF) and nutrient fields to impact the dynamics and phenotypic transitions of each tumor and endothelial cell.
View Article and Find Full Text PDFPurpose: Quantitative evaluation of dynamic contrast enhanced MRI (DCE-MRI) allows for estimating perfusion, vessel permeability, and tissue volume fractions by fitting signal intensity curves to pharmacokinetic models. These compart mental models assume rapid equilibration of contrast agent within each voxel. However, there is increasing evidence that this assumption is violated for small molecular weight gadolinium chelates.
View Article and Find Full Text PDF