Forecasting environmental hazards is critical in preventing or building resilience to their impacts on human communities and ecosystems. Environmental data science is an emerging field that can be harnessed for forecasting, yet more work is needed to develop methodologies that can leverage increasingly large and complex data sets for decision support. Here, we design a data-driven framework that can, for the first time, forecast bacterial standard exceedances at marine beaches with 3 days lead time.
View Article and Find Full Text PDFTo reduce the incidence of recreational waterborne illness, fecal indicator bacteria (FIB) are measured to assess water quality and inform beach management. Recently, predictive FIB models have been used to aid managers in making beach posting and closure decisions. However, those predictive models must be trained using rich historical data sets consisting of FIB and environmental data that span years, and many beaches lack such data sets.
View Article and Find Full Text PDF