Publications by authors named "Ryan T Lang"

Tumor-targeted, activatable photoimmunotherapy (taPIT) has been shown to selectively destroy tumor in a metastatic mouse model. However, the photoimmunoconjugate (PIC) used for taPIT includes a small fraction of non-covalently associated (free) benzoporphyrin derivative (BPD), which leads to non-specific killing in vitro. Here, we report a new treatment protocol for patient-derived primary tumor cell cultures ultrasensitive to BPD photodynamic therapy (BPD-PDT).

View Article and Find Full Text PDF

Hyperspectral fluorescence microscopy images of biological specimens frequently contain multiple observations of a sparse set of spectral features spread in space with varying intensity. Here, we introduce a spectral vector denoising algorithm that filters out noise without sacrificing spatial information by leveraging redundant observations of spectral signatures. The algorithm applies an n-dimensional Chebyshev or Fourier transform to cluster pixels based on spectral similarity independent of pixel intensity or location, and a denoising convolution filter is then applied in this spectral space.

View Article and Find Full Text PDF

The broad use of two-photon microscopy has been enabled in part by Ti:Sapphire femtosecond lasers, which offer a wavelength-tunable source of pulsed excitation. Action spectra have thus been primarily reported for the tunable range of Ti:Sapphire lasers (∼700-1000 nm). However, longer wavelengths offer deeper imaging in tissue via reduced scattering and spectral dips in water absorption, and new generations of pulsed lasers offer wider tunable ranges.

View Article and Find Full Text PDF

Significance: Commercial lasers, lamps, and light-emitting diode (LED) light sources have stimulated the clinical translation of photodynamic therapy (PDT). Yet, the continued exploration of new photosensitizers (PSs) for PDT often requires separate activation wavelengths for each agent being investigated. Customized light sources for such research frequently come at significant financial or technical cost, especially when compounded over many agents and wavelengths.

View Article and Find Full Text PDF

Photosensitizer (PS)-antibody conjugates (photoimmunoconjugates, PICs) enable cancer cell-targeted photodynamic therapy (PDT). Nonspecific chemical bioconjugation is widely used to synthesize PICs but gives rise to several shortcomings. The conjugates are heterogeneous, and the process is not easily reproducible.

View Article and Find Full Text PDF

Live-subject microscopies, including microendoscopy and other related technologies, offer promise for basic biology research as well as the optical biopsy of disease in the clinic. However, cellular resolution generally comes with the trade-off of a microscopic field-of-view. Microimage mosaicking enables stitching many small scenes together to aid visualization, quantitative interpretation, and mapping of microscale features, for example, to guide surgical intervention.

View Article and Find Full Text PDF

Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations.

View Article and Find Full Text PDF