In human lungs, the earliest encounter of Mycobacterium tuberculosis, the agent of tuberculosis, involves alveolar epithelial cells. Droplets expectorated by a patient with tuberculosis are likely to contain a mixed population of M. tuberculosis cells in different physiologic and metabolic states from the lung lesions of the patient.
View Article and Find Full Text PDFBackground: The reactivation of tuberculosis arises in persons who are latently infected and in those who have been previously treated. The mechanism of the reactivation of tuberculosis in either situation is not well understood. A 13-gene mce1 operon of Mycobacterium tuberculosis was previously shown to be associated with latent infection in mice and may also play a role in reactivation.
View Article and Find Full Text PDFOne key adaptation that Mycobacterium tuberculosis established to survive long term in vivo is a reliance on lipids as an energy source. M. tuberculosis H37Rv has 36 fadD genes annotated as putative fatty acyl-coenzyme A (CoA) synthetase genes, which encode enzymes that activate fatty acids for metabolism.
View Article and Find Full Text PDFAlveolar macrophages are the first line of host defence against mycobacteria, but an insufficient host response allows survival of bacteria within macrophages. We aimed to investigate the role of Toll-like receptor 9 (TLR9) activation in macrophage defence against mycobacteria. Human in vitro differentiated macrophages as well as human and mouse alveolar macrophages showed TLR9 mRNA and protein expression.
View Article and Find Full Text PDFThe Mycobacterium tuberculosis genome contains four copies of an operon called mce (mce1-4). Previously we reported that M. tuberculosis disrupted in the mce1 operon is more virulent than wild-type M.
View Article and Find Full Text PDFMycobacterium tuberculosis causes a variety of host clinical outcomes. We previously showed that M. tuberculosis disrupted in an operon called mce1 proliferates unchecked in BALB/c mouse lungs.
View Article and Find Full Text PDFThe emergence of drug-resistant Mycobacterium tuberculosis strains and the widespread occurrence of AIDS demand newer and more efficient control of tuberculosis. The protective efficacy of the current Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine is highly variable. Therefore, development of an effective new vaccine has gained momentum in recent years.
View Article and Find Full Text PDFA major obstacle to tuberculosis (TB) control is the problem of chronic TB infection (CTBI). Here we report that 5'-adenosinephosphosulphate reductase (CysH), an enzyme essential for the production of reduced-sulphur-containing metabolites, is critical for Mycobacterium tuberculosis (Mtb) survival in chronic infection phase in mice. Disruption of cysH rendered Mtb auxotrophic for cysteine and methionine, and attenuated virulence in BALB/c and C57BL/6 immunocompetent mice.
View Article and Find Full Text PDFSulfated molecules have been shown to modulate isotypic interactions between cells of metazoans and heterotypic interactions between bacterial pathogens or symbionts and their eukaryotic host cells. Mycobacterium tuberculosis, the causative agent of tuberculosis, produces sulfated molecules that have eluded functional characterization for decades. We demonstrate here that a previously uncharacterized sulfated molecule, termed S881, is localized to the outer envelope of M.
View Article and Find Full Text PDFSulfolipid-1 (SL-1) is an abundant sulfated glycolipid and potential virulence factor found in Mycobacterium tuberculosis. SL-1 consists of a trehalose-2-sulfate (T2S) disaccharide elaborated with four lipids. We identified and characterized a conserved mycobacterial sulfotransferase, Stf0, which generates the T2S moiety of SL-1.
View Article and Find Full Text PDFMycobacteria contain high levels of the disaccharide trehalose in free form as well as within various immunologically relevant glycolipids such as cord factor and sulfolipid-1. By contrast, most bacteria use trehalose solely as a general osmoprotectant or thermoprotectant. Mycobacterium tuberculosis and Mycobacterium smegmatis possess three pathways for the synthesis of trehalose.
View Article and Find Full Text PDFThe study of the metabolome presents numerous challenges, first among them being the cataloging of its constituents. A step in this direction will be the development of tools to identify metabolites that share common structural features. The importance of sulfated molecules in cell-cell communication motivated us to develop a rapid two-step method for identifying these metabolites in microorganisms, particularly in pathogenic mycobacteria.
View Article and Find Full Text PDFBacterial sulfate assimilation pathways provide for activation of inorganic sulfur for the biosynthesis of cysteine and methionine, through either adenosine 5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as intermediates. PAPS is also the substrate for sulfotransferases that produce sulfolipids, putative virulence factors, in Mycobacterium tuberculosis such as SL-1. In this report, genetic complementation using Escherichia coli mutant strains deficient in APS kinase and PAPS reductase was used to define the M.
View Article and Find Full Text PDFMycobacteria are known to acquire resistance to the antituberculous drug pyrazinamide (PZA) through mutations in the gene encoding pyrazinamidase (PZase), an enzyme that converts PZA into pyrazinoic acid, the presumed active form of PZA against bacteria. Additional mechanisms of resistance to the drug are known to exist but have not been fully investigated. Among these is the non-uptake of the pro-drug, a possibility investigated in the present study.
View Article and Find Full Text PDF