Humans attain slower maximum velocity (vmax) on curves versus straight paths, potentially due to centripetal ground reaction force (GRF) production, and this depends on curve radius. Previous studies found GRF production differences between an athlete's inside versus outside leg relative to the center of the curve. Further, sprinting clockwise (CW) versus counterclockwise (CCW) slows vmax.
View Article and Find Full Text PDFBackground: Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.
View Article and Find Full Text PDFBackground: Stress fractures are injuries caused by repetitive loading during activities such as running. The application of advanced analytical methods such as machine learning to data from multiple wearable sensors has allowed for predictions of biomechanical variables associated with running-related injuries like stress fractures. However, it is unclear if data from a single wearable sensor can accurately estimate variables that characterize external loading during running such as peak vertical ground reaction force (vGRF), vertical impulse, and ground contact time.
View Article and Find Full Text PDFInertial measurement units (IMUs) are popular tools for estimating biomechanical variables such as peak vertical ground reaction force (GRF) and foot-ground contact time (t), often by using multiple sensors or predictive models. Despite their growing use, little is known about the effects of varying low-pass filter cutoff frequency, which can affect the magnitude of force-related dependent variables, the accuracy of IMU-derived metrics, or if simpler methods for such estimations exist. The purpose of this study was to investigate the effects of varying low-pass filter cutoff frequency on the correlation of IMU-derived peak GRF and t to gold-standard lab-based measurements.
View Article and Find Full Text PDFPurpose: we determined the metabolic and biomechanical effects of adding mass to the running-specific prosthesis (RSP) and biological foot of individuals with a unilateral transtibial amputation (TTA) during running.
Methods: 10 individuals (8 males, 2 females) with a TTA ran on a force-measuring treadmill at 2.5 m/s with 100 g and 300 g added to their RSP alone or to their RSP and biological foot while we measured their metabolic rates and calculated peak vertical ground reaction force (vGRF), stance-average vGRF, and step time symmetry indices.
Background: The measurement of rearfoot kinematics by placing reflective markers on the shoe heel assumes its motion is identical to the foot's motion. Studies have compared foot and shoe kinematics during running but with conflicting results. The primary purpose of this study was to compare shoe and calcaneus three-dimensional range of motion during running.
View Article and Find Full Text PDFObjective: Running with a stroller provides an opportunity for parents to exercise near their child and counteract health declines experienced during early parenthood. Understanding biomechanical and physiological changes that occur when stroller running is needed to evaluate its health impact, yet the effects of stroller running have not been clearly presented. Here, three commonly used stroller pushing methods were investigated to detect potential changes in energetic cost and lower-limb kinematics.
View Article and Find Full Text PDF