We demonstrate both experimentally and using a numerical simulation that, under special conditions, the repulsive Coulomb interaction helps to suppress the emittance growth of an rf-driven bunch of ions in an electrostatic ion beam trap. The underlying mechanisms can be explained by the synchronization of ion motion when nonlinear interactions are present. The surprising effect can help in improving the phase space manipulation of ions and the beam control in storage rings and accelerators and may be applied to other systems with many-body interactions in a periodic potential.
View Article and Find Full Text PDFThe dynamics of ions in an electrostatic ion beam trap in the presence of an external time-dependent field is studied with a recently developed particle-in-cell simulation technique. The simulation technique, capable of accounting for space-charge effects, has reproduced all the experimental results on the bunch dynamics in the radio frequency mode. With simulation, the motion of ions is visualized in phase space and it is shown that the ion-ion interaction strongly affects the distribution of ions in phase space in the presence of an rf driving voltage.
View Article and Find Full Text PDFWe developed a simulation technique to study the effect of space charge interaction between trapped ions in the electrostatic ion beam trap (EIBT). The importance of space charge is demonstrated in both the dispersive and the self-bunching regime of the ion trap. The simulation results provide an estimate for the space charge effect on the trapping efficiency.
View Article and Find Full Text PDFZebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells.
View Article and Find Full Text PDFIn anticipation of results from current and future double-β decay studies, we report a measurement resulting in a (82)Se double-β decay Q value of 2997.9(3) keV, an order of magnitude more precise than the currently accepted value. We also present preliminary results of a calculation of the (82)Se neutrinoless double-β decay nuclear matrix element that corrects in part for the small size of the shell model single-particle space.
View Article and Find Full Text PDF