Publications by authors named "Ryan Remedios"

All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience.

View Article and Find Full Text PDF

Social interactions, such as an aggressive encounter between two conspecific males or a mating encounter between a male and a female, typically progress from an initial appetitive or motivational phase, to a final consummatory phase. This progression involves both changes in the intensity of the animals' internal state of arousal or motivation and sequential changes in their behavior. How are these internal states, and their escalating intensity, encoded in the brain? Does this escalation drive the progression from the appetitive/motivational to the consummatory phase of a social interaction and, if so, how are appropriate behaviors chosen during this progression? Recent work on social behaviors in flies and mice suggests possible ways in which changes in internal state intensity during a social encounter may be encoded and coupled to appropriate behavioral decisions at appropriate phases of the interaction.

View Article and Find Full Text PDF

Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses.

View Article and Find Full Text PDF

The biological function of the claustrum remains speculative, despite many years of research. On the basis of its widespread connections it is often hypothesized that the claustrum may have an integrative function mainly reflecting objects rather than the details of sensory stimuli. Given the absence of a clear demonstration of any sensory integration in claustral neurons, however, we propose an alternative, data-driven, hypothesis: namely that the claustrum detects the occurrence of novel or salient sensory events.

View Article and Find Full Text PDF

Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters.

View Article and Find Full Text PDF

In this issue of Neuron, Iurilli et al. (2012) demonstrate that auditory cortex activation directly engages local GABAergic circuits in V1 to induce sound-driven hyperpolarizations in layer 2/3 and layer 6 pyramidal neurons. Thereby, sounds can directly suppress V1 activity and visual driven behavior.

View Article and Find Full Text PDF

The claustrum receives afferent inputs from multiple sensory-related brain areas, prompting speculation about a role in integrating information across sensory modalities. Here we directly test this hypothesis by probing neurons in the primate claustrum for functional characteristics of multisensory processing. To this end we recorded neuronal responses to naturalistic audio-visual stimuli from the claustra of alert monkeys.

View Article and Find Full Text PDF

Salient sounds such as those created by drumming can serve as means of nonvocal acoustic communication in addition to vocal sounds. Despite the ubiquity of drumming across human cultures, its origins and the brain regions specialized in processing such signals remain unexplored. Here, we report that an important animal model for vocal communication, the macaque monkey, also displays drumming behavior, and we exploit this finding to show that vocal and nonvocal communication sounds are represented by overlapping networks in the brain's temporal lobe.

View Article and Find Full Text PDF

The early cortical primordium develops from a sheet of neuroepithelium that is flanked by distinct signaling centers. Of these, the hem and the antihem are positioned as longitudinal stripes, running rostro-caudally along the medial and lateral faces, respectively, of each telencepahlic hemisphere. In this review we examine the similarities and differences in how these two signaling centers arise, their roles in patterning adjacent tissues, and the cells and structures they contribute to.

View Article and Find Full Text PDF

Human imaging studies implicate the insular cortex in processing complex sounds and vocal communication signals such as speech. In addition, lesions of the insula often manifest as deficits in sound or speech recognition (auditory agnosia) and speech production. While models of acoustic perception assign an important role to the insula, little is known about the underlying neuronal substrate.

View Article and Find Full Text PDF

The amygdaloid complex consists of diverse nuclei that belong to distinct functional systems, yet many issues about its development are poorly understood. Here, we identify a stream of migrating cells that form specific amygdaloid nuclei in mice. In utero electroporation showed that this caudal amygdaloid stream (CAS) originated in a unique domain at the caudal telencephalic pole that is contiguous with the dorsal pallium, which was previously thought to generate only neocortical cells.

View Article and Find Full Text PDF

The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined.

View Article and Find Full Text PDF

The amygdaloid complex is a group of nuclei that are thought to originate from multiple sites of the dorsal and ventral telencephalic neuroepithelium. The mechanisms that regulate their development are essentially unknown. We studied the role of Pax6 and Emx2, two transcription factors that regulate regional specification and growth of the telencephalon, in the morphogenesis of the amygdaloid complex.

View Article and Find Full Text PDF

The mechanisms that regulate the development of the amygdaloid complex are as yet poorly understood. Here, we show that in the absence of the LIM-homeodomain (LIM-HD) gene Lhx2, a particular amygdaloid nucleus, the nucleus of the lateral olfactory tract (nLOT), is selectively disrupted. LIM family members are well suited for multiple roles in the development of complex structures because they participate in regulatory interactions that permit a diversity of function.

View Article and Find Full Text PDF

Fibroblast growth factors (FGF) receptors FgfR1, FgfR2 and FgfR3 are differentially regulated during oligodendrocyte (OL) maturation in vitro: FgfR3 is expressed by OL progenitors whereas FgfR2 is expressed by differentiated OLs [Mol Cell Neurosci 1996;7:263-275], and we have recently shown that FgfR3 is required for the timely differentiation of OLs in vivo [J Neurosci 2003;23:883-894]. Here we have used in situ hybridization to investigate the expression patterns of FgfR1-3 and compare them to the putative OL progenitor markers Olig2, Pdgfralpha and Plp/dm20 as a function of development in vivo, in particular at sites of OL specification, migration or differentiation in the mouse forebrain and cerebellum. We show that at early stages FgfR1-3 expression overlaps with that of Olig2 in the embryonic ventricular zone of the lateral and medial ganglionic eminences.

View Article and Find Full Text PDF