Publications by authors named "Ryan Readnower"

Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits.

View Article and Find Full Text PDF

The central nervous system (CNS) is protected by blood-brain barrier (BBB) and blood-cerebrospinal-fluid (CSF) barrier that limit toxic agents and most molecules from penetrating the brain and spinal cord. However, these barriers also prevent most pharmaceuticals from entering into the CNS. Drug delivery to the CNS following neurotrauma is complicated.

View Article and Find Full Text PDF

Diabetes is characterized by hyperglycaemia and perturbations in intermediary metabolism. In particular, diabetes can augment flux through accessory pathways of glucose metabolism, such as the hexosamine biosynthetic pathway (HBP), which produces the sugar donor for the β-O-linked-N-acetylglucosamine (O-GlcNAc) post-translational modification of proteins. Diabetes also promotes mitochondrial dysfunction.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) has become a growing epidemic but no approved pharmacological treatment has been identified. Our previous work indicates that mitochondrial oxidative stress/damage and loss of bioenergetics play a pivotal role in neuronal cell death and behavioral outcome following experimental TBI. One tactic that has had some experimental success is to target glutathione using its precursor N-acetylcysteine (NAC).

View Article and Find Full Text PDF

Preclinical studies of animals with risk factors, and how those risk factors contribute to the development of cardiovascular disease and cardiac dysfunction, are clearly needed. One such approach is to feed mice a diet rich in fat (i.e.

View Article and Find Full Text PDF

The singly coded gene O-linked-β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt) resides on the X chromosome and is necessary for embryonic stem cell viability during embryogenesis. In mature cells, this enzyme catalyzes the posttranslational modification known as O-GlcNAc to various cellular proteins. Several groups, including our own, have shown that acute increases in protein O-GlcNAcylation are cardioprotective both in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that adding a specific modification called O-GlcNAc to proteins in CSCs helps them survive stressful conditions, such as low oxygen levels, crucial for improving their effectiveness in therapy.
  • * Reducing O-GlcNAc makes CSCs more vulnerable to damage after oxygen deprivation, while increasing it enhances their survival, indicating O-GlcNAcylation as a key factor for boosting CSC resilience before transferring them into patients.
View Article and Find Full Text PDF

Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology.

View Article and Find Full Text PDF

Mitochondrial dysfunction is known to play a pivotal role in cell death mechanisms following traumatic brain injury (TBI). N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclosporin A (CsA) analog, inhibits the mitochondrial permeability transition pore (mPTP) and has been shown to be neuroprotective following TBI in mice. However, the translation of the neuroprotective effects of mPTP inhibitors, including CsA and NIM811, into improved cognitive end points has yet to be fully investigated.

View Article and Find Full Text PDF

Hypometabolism is a hallmark of Alzheimer's disease (AD) and implicates a mitochondrial role in the neuropathology associated with AD. Mitochondrial amyloid-beta (Aβ) accumulation precedes extracellular Aβ deposition. In addition to increasing oxidative stress, Aβ has been shown to directly inhibit mitochondrial enzymes.

View Article and Find Full Text PDF

The analysis of mitochondrial bioenergetic function typically has required 50-100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI) there is significant neuropathology which includes mitochondrial dysfunction, loss of cortical gray matter, microglial activation, and cognitive impairment. Previous evidence has shown that activation of the peroxisome proliferator-activated receptors (PPARs) provide neuroprotection following traumatic brain and spinal injuries. In the current study we hypothesized that treatment with the PPAR ligand Pioglitazone would promote neuroprotection following a rat controlled cortical impact model of TBI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) as a consequence of exposure to blast is increasingly prevalent in military populations, with the underlying pathophysiological mechanisms mostly unknown. In the present study, we utilized an air-driven shock tube to investigate the effects of blast exposure (120 kPa) on rat brains. Immediately following exposure to blast, neurological function was reduced.

View Article and Find Full Text PDF

To determine the neuroprotective effect of fasting after traumatic brain injury (TBI) and to elucidate the potential underlying mechanisms, we used a controlled cortical impact (CCI) injury model to induce either a moderate or a severe injury to adult male Sprague Dawley rats. Tissue-sparing assessments were used to determine the level of neuroprotection of fasting, hypoglycemia (insulin 10 U), or ketone (1.66 mmoles/kg/day or 0.

View Article and Find Full Text PDF