Introduction: The first outbreak of dengue in American Samoa was reported in 1911. Sporadic outbreaks have been reported since, as were outbreaks of other pathogens transmitted by Aedes species mosquitoes including Ross River, chikungunya, and Zika viruses. During an outbreak of dengue virus-type 2 (DENV-2) in 2016-2018, we conducted household-based cluster investigations to identify population-specific risk factors associated with infection and performed entomologic surveillance to determine the relative abundance of Ae.
View Article and Find Full Text PDFMosquitoes and the diseases they transmit continue to place millions of people at risk of infection around the world. Novel methods of vector control are being developed to provide public health officials with the necessary tools to prevent disease transmission and reduce local mosquito populations. However, these methods will require public acceptance for a sustainable approach and evaluations at local settings.
View Article and Find Full Text PDFMass-trapping has been used to control outbreaks of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Puerto Rico since 2011. We investigated the effect of multi-year, insecticide-free mass trapping had on the insecticide susceptibility profile of Ae. aegypti.
View Article and Find Full Text PDFAedes aegypti is the main vector of arboviral diseases such as dengue, chikungunya and Zika. A key feature for disease transmission modeling and vector control planning is adult mosquito dispersal. We studied Ae aegypti adult dispersal by conducting a mark-capture study of naturally occurring Ae.
View Article and Find Full Text PDFA dengue outbreak occurred on Hawaii Island between September 2015 and March 2016. Entomological investigations were undertaken between December 2015 and February 2016 to determine which mosquito species were responsible for the outbreak. A total of 3,259 mosquitoes were collected using a combination of CDC autocidal gravid ovitraps, Biogents BG-Sentinel traps, and hand-nets; immature mosquitoes were collected during environmental surveys.
View Article and Find Full Text PDFBackground: Detecting and monitoring the transmission of arboviruses such as Zika virus (ZIKV), dengue virus, and chikungunya virus is critical for prevention and control activities. Previous work has compared the ability of different human-focused surveillance strategies to detect ZIKV transmission in U.S.
View Article and Find Full Text PDFIn response to the 2016 Zika outbreak, Aedes aegypti mosquitoes from 38 locations across Puerto Rico were screened using Centers for Disease Control and Prevention bottle bioassays for sensitivity to insecticides used for mosquito control. All populations were resistant to pyrethroids. Naled, an organophosphate, was the most effective insecticide, killing all mosquitoes tested.
View Article and Find Full Text PDFThe exotic arboviruses chikungunya (CHIKV) and Zika (ZIKV) recently caused large outbreaks and continue to circulate in Puerto Rico, prompting entomological investigations at 9 locations with confirmed CHIKV- or ZIKV-infected human cases. Adult mosquitoes were collected using the Centers for Disease Control and Prevention autocidal gravid ovitraps over a 14-day period at each site. Mean female captured per trap-week ranged from 13.
View Article and Find Full Text PDFPuerto Rico was severely impacted by Hurricanes Irma and Maria in September 2017. The island has been endemic for dengue viruses (DENV) and recently suffered epidemics of chikungunya (CHIKV 2014) and Zika (ZIKV 2016) viruses. Although severe storms tend to increase the number of vector and nuisance mosquitoes, we do not know how they influence populations and arboviral transmission.
View Article and Find Full Text PDFThis investigation was initiated to control Aedes aegypti and Zika virus transmission in Caguas City, Puerto Rico, during the 2016 epidemic using Integrated Vector Management (IVM), which included community awareness and education, source reduction, larviciding, and mass-trapping with autocidal gravid ovitraps (AGO). The epidemic peaked in August to October 2016 and waned after April 2017. There was a preintervention period in October/November 2016 and IVM lasted until August 2017.
View Article and Find Full Text PDFPuerto Rico detected the first confirmed case of chikungunya virus (CHIKV) in May 2014 and the virus rapidly spread throughout the island. The invasion of CHIKV allowed us to observe Aedes aegypti (L.) densities, infection rates, and impact of vector control in urban areas using CDC autocidal gravid ovitraps (AGO traps) for mosquito control over several years.
View Article and Find Full Text PDFAn important step to incriminate a mosquito as a vector of a disease pathogen is finding evidence of direct contact between the mosquito and humans. Typically, this is accomplished through landing/biting catches, or host blood meal analysis in engorged mosquitoes via immunologic assays. An alternate approach is to identify the presence of specific mosquito anti-saliva protein antibodies in the blood of exposed hosts.
View Article and Find Full Text PDFMMWR Morb Mortal Wkly Rep
August 2016
Zika virus is a flavivirus transmitted primarily by Aedes aegypti and Aedes albopictus mosquitoes, and infection can be asymptomatic or result in an acute febrile illness with rash (1). Zika virus infection during pregnancy is a cause of microcephaly and other severe birth defects (2). Infection has also been associated with Guillain-Barré syndrome (GBS) (3) and severe thrombocytopenia (4,5).
View Article and Find Full Text PDFDengue is an acute febrile illness caused by any of four dengue virus types (DENV-1-4). DENVs are transmitted by mosquitos of the genus Aedes (1) and are endemic throughout the tropics (2). In 2010, an estimated 390 million DENV infections occurred worldwide (2).
View Article and Find Full Text PDFSerum specimens from free-ranging but nonnative patas monkeys (Erythrocebus patas) and rhesus macaques (Macaca mulatta) in southwestern Puerto Rico (PR) were tested for antibodies to infection with dengue viruses (DENVs), West Nile virus (WNV), Leptospira species, and Burkholderia pseudomallei by microneutralization, plaque reduction neutralization, microscopic agglutination, and indirect hemagglutination, respectively. Of 23 animals (21 E. patas and two M.
View Article and Find Full Text PDFBackground: Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae.
View Article and Find Full Text PDFIn October 2012, the Haitian Ministry of Health and the US CDC were notified of 25 recent dengue cases, confirmed by rapid diagnostic tests (RDTs), among non-governmental organization (NGO) workers. We conducted a serosurvey among NGO workers in Léogane and Port-au-Prince to determine the extent of and risk factors for dengue virus infection. Of the total 776 staff from targeted NGOs in Léogane and Port-au-Prince, 173 (22%; 52 expatriates and 121 Haitians) participated.
View Article and Find Full Text PDFWe have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae.
View Article and Find Full Text PDFBackground: The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.
Methods And Results: To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A.
Background: Dengue viruses are endemic across most tropical and subtropical regions. Because no proven vaccines are available, dengue prevention is primarily accomplished through controlling the mosquito vector Aedes aegypti. While dispersal distance is generally believed to be approximately 100 m, patterns of dispersion may vary in urban areas due to landscape features acting as barriers or corridors to dispersal.
View Article and Find Full Text PDFBackground: Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti.
Results: From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus.
Water storage drums are often a primary breeding site for Aedes aegypti in developing countries. Habitat characteristics can impact both adult and larval fitness and survival, which may potentially influence arbovirus transmission. Our objective was to compare fundamental environmental differences in water drums based on the presence or absence of larvae in Trinidad.
View Article and Find Full Text PDFMicrosatellites have proved to be very useful as genetic markers, as they seem to be ubiquitous and randomly distributed throughout most eukaryote genomes. However, our laboratories and others have determined that this paradigm does not necessarily apply to the yellow fever mosquito Aedes aegypti. We report the isolation and identification of microsatellite sequences from multiple genomic libraries for A.
View Article and Find Full Text PDF