Publications by authors named "Ryan R Germain"

Anticipating species' responses to environmental change is a pressing mission in biodiversity conservation. Despite decades of research investigating how climate change may affect population sizes, historical context is lacking, and the traits that mediate demographic sensitivity to changing climate remain elusive. We use whole-genome sequence data to reconstruct the demographic histories of 263 bird species over the past million years and identify networks of interacting morphological and life history traits associated with changes in effective population size (N) in response to climate warming and cooling.

View Article and Find Full Text PDF

Individuals vary in their immune genotype, inbreeding coefficient f, immune responses, survival to adulthood, and adult longevity. However, whether immune genes predict survival or longevity, whether such relationships are mediated through immune responses, and how f affects immune genotype remain unclear. We use a wild song sparrow (Melospiza melodia) population in which survival to adulthood, adult longevity, and f were measured precisely, and in which immune responses have previously been assessed.

View Article and Find Full Text PDF

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size () to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances.

View Article and Find Full Text PDF

Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult.

View Article and Find Full Text PDF

In socially monogamous species, male reproductive success consists of "within-pair" offspring produced with their socially paired mate(s), and "extra-pair" offspring produced with additional females throughout the population. Both reproductive pathways offer distinct opportunities for selection in wild populations, as each is composed of separate components of mate attraction, female fecundity, and paternity allocation. Identifying key sources of variance and covariance among these components is a crucial step toward understanding the reproductive strategies that males use to maximize fitness both annually and over their lifetimes.

View Article and Find Full Text PDF

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies.

View Article and Find Full Text PDF

Understanding micro-evolutionary responses of mating systems to contemporary selection requires estimating sex-specific additive genetic variances and cross-sex genetic covariances in key reproductive strategy traits. One key trait comprises the occurrence of divorce versus mate fidelity across sequential reproductive attempts. If divorce represents an evolving behavioural strategy that responds to selection it must have non-zero individual repeatability and heritability, but quantitative estimates from wild populations are scarce.

View Article and Find Full Text PDF

Variation in immune gene sequences is known to influence resistance to infectious diseases and parasites, and hence survival and mate choice, across animal taxa. Toll-like receptors (TLRs) comprise one essential gene family in the vertebrate innate immune system and recognize evolutionarily conserved structures from all major microorganism classes. However, the causes and consequences of TLR variation in passerine birds remain largely unexplored.

View Article and Find Full Text PDF

The evolutionary benefits of simultaneous polyandry (female multiple mating within a single reproductive event) remain elusive. One potential benefit could arise if polyandry alters sibship structures and consequent relationships and relatedness among females' descendants, thereby intrinsically reducing future inbreeding risk (the indirect inbreeding avoidance hypothesis). However such effects have not been quantified in naturally complex mating systems that also encompass iteroparity, overlapping generations, sequential polyandry, and polygyny.

View Article and Find Full Text PDF

Inbreeding is widely hypothesized to shape mating systems and population persistence, but such effects will depend on which traits show inbreeding depression. Population and evolutionary consequences could be substantial if inbreeding decreases sperm performance and hence decreases male fertilization success and female fertility. However, the magnitude of inbreeding depression in sperm performance traits has rarely been estimated in wild populations experiencing natural variation in inbreeding.

View Article and Find Full Text PDF

Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the genetics behind behavioral and physical traits in hybrid zones, particularly in Swainson's thrushes, to understand speciation and adaptation.
  • Researchers found significant SNPs on chromosome 4 linked to migratory orientation, highlighting genes related to the circadian clock and nervous system as part of a common genetic framework for migration.
  • Plumage color showed a more complex genetic basis with strong links to the Z chromosome and the TYRP1 gene, suggesting divergent selection contributes to differences between populations and aids in understanding the genetics of speciation.
View Article and Find Full Text PDF

Differences in seasonal migration might promote reproductive isolation and differentiation by causing populations in migratory divides to arrive on the breeding grounds at different times and/or produce hybrids that take inferior migratory routes. We examined this question by quantifying divergence in song, colour, and morphology between sister pairs of North American migratory birds. We predicted that apparent rates of phenotypic differentiation would differ between pairs that do and do not form migratory divides.

View Article and Find Full Text PDF
Article Synopsis
  • Extra-pair reproduction in song sparrows is believed to help females avoid inbreeding by mating with unrelated males, but studies have had limitations in accurately measuring inbreeding levels and offspring survival.
  • Research using pedigree data revealed that extra-pair offspring generally had lower inbreeding coefficients compared to within-pair offspring, and the likelihood of extra-pair reproduction increased if the female's social partner was closely related.
  • However, simulations indicate that the observed results might be influenced by biases related to inbreeding depression affecting the survival of early offspring, suggesting that the idea of females intentionally avoiding inbreeding may need further investigation.
View Article and Find Full Text PDF

Plumage coloration in birds plays a critical role in communication and can be under selection throughout the annual cycle as a sexual and social signal. However, for migratory birds, little is known about the acquisition and maintenance of colorful plumage during the nonbreeding period. Winter habitat could influence the quality of colorful plumage, ultimately carrying over to influence sexual selection and social interactions during the breeding period.

View Article and Find Full Text PDF

Theory predicts that animals breeding in heterogeneous landscapes preferentially occupy habitats likely to maximize individual fitness, but identifying those habitats has proved problematic. Many studies develop metrics of habitat quality linked to site-specific reproductive output measured in successive years, but few separate the independent effects of individual "intrinsic quality" from those due solely to the attributes of the habitats themselves. In many populations, processes such as competitive territory defense, longevity, site-fidelity, and variation in breeding density and territory size over time have the potential to limit the degree to which individual and habitat quality will be positively related in nature.

View Article and Find Full Text PDF

Roads are a major cause of habitat fragmentation that can negatively affect many mammal populations. Mitigation measures such as crossing structures are a proposed method to reduce the negative effects of roads on wildlife, but the best methods for determining where such structures should be implemented, and how their effects might differ between species in mammal communities is largely unknown. We investigated the effects of a major highway through south-eastern British Columbia, Canada on several mammal species to determine how the highway may act as a barrier to animal movement, and how species may differ in their crossing-area preferences.

View Article and Find Full Text PDF