DNA-binding response regulators (DBRRs) are a broad class of proteins that operate in tandem with their partner kinase proteins to form two-component signal transduction systems in bacteria. Typical DBRRs are composed of two domains where the conserved N-terminal domain accepts transduced signals and the evolutionarily diverse C-terminal domain binds to DNA. These domains are assumed to be functionally independent, and hence recombination of the two domains should yield novel DBRRs of arbitrary input/output response, which can be used as biosensors.
View Article and Find Full Text PDFChromosomes endure mechanical stresses throughout the cell cycle; for example, resulting from the pulling of chromosomes by spindle fibers during mitosis or deformation of the nucleus during cell migration. The response to physical stress is closely related to chromosome structure and function. Micromechanical studies of mitotic chromosomes have revealed them to be remarkably extensible objects and informed early models of mitotic chromosome organization.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2022
In recent years, much effort has been devoted to understanding the three-dimensional (3D) organization of the genome and how genomic structure mediates nuclear function. The development of experimental techniques that combine DNA proximity ligation with high-throughput sequencing, such as Hi-C, have substantially improved our knowledge about chromatin organization. Numerous experimental advancements, not only utilizing DNA proximity ligation but also high-resolution genome imaging (DNA tracing), have required theoretical modeling to determine the structural ensembles consistent with such data.
View Article and Find Full Text PDFDirect coupling analysis (DCA) is a global statistical approach that uses information encoded in protein sequence data to predict spatial contacts in a three-dimensional structure of a folded protein. DCA has been widely used to predict the monomeric fold at amino acid resolution and to identify biologically relevant interaction sites within a folded protein. Going beyond single proteins, DCA has also been used to identify spatial contacts that stabilize the interaction in protein complex formation.
View Article and Find Full Text PDFUsing computer simulations, we generate cell-specific 3D chromosomal structures and compare them to recently published chromatin structures obtained through microscopy. We demonstrate using machine learning and polymer physics simulations that epigenetic information can be used to predict the structural ensembles of multiple human cell lines. Theory predicts that chromosome structures are fluid and can only be described by an ensemble, which is consistent with the observation that chromosomes exhibit no unique fold.
View Article and Find Full Text PDFWe introduce the Nucleome Data Bank (NDB), a web-based platform to simulate and analyze the three-dimensional (3D) organization of genomes. The NDB enables physics-based simulation of chromosomal structural dynamics through the MEGABASE + MiChroM computational pipeline. The input of the pipeline consists of epigenetic information sourced from the Encode database; the output consists of the trajectories of chromosomal motions that accurately predict Hi-C and fluorescence insitu hybridization data, as well as multiple observations of chromosomal dynamics in vivo.
View Article and Find Full Text PDFWe develop a simple, coarse-grained approach for simulating the folding of the Beet Western Yellow Virus (BWYV) pseudoknot toward the goal of creating a transferable model that can be used to study other small RNA molecules. This approach combines a structure-based model (SBM) of RNA with an electrostatic scheme that has previously been shown to correctly reproduce ionic condensation in the native basin. Mg ions are represented explicitly, directly incorporating ion-ion correlations into the system, and K is represented implicitly, through the mean-field generalized Manning counterion condensation theory.
View Article and Find Full Text PDFProtein assemblies consisting of structural maintenance of chromosomes (SMC) and kleisin subunits are essential for the process of chromosome segregation across all domains of life. Prokaryotic condensin belonging to this class of protein complexes is composed of a homodimer of SMC that associates with a kleisin protein subunit called ScpA. While limited structural data exist for the proteins that comprise the (SMC)-kleisin complex, the complete structure of the entire complex remains unknown.
View Article and Find Full Text PDFSelecting amino acids to design novel protein-protein interactions that facilitate catalysis is a daunting challenge. We propose that a computational coevolutionary landscape based on sequence analysis alone offers a major advantage over expensive, time-consuming brute-force approaches currently employed. Our coevolutionary landscape allows prediction of single amino acid substitutions that produce functional interactions between non-cognate, interspecies signaling partners.
View Article and Find Full Text PDFCohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases.
View Article and Find Full Text PDFInside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types.
View Article and Find Full Text PDFProtein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design.
View Article and Find Full Text PDFUnlabelled: Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes.
View Article and Find Full Text PDFRecent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid sites within the multiple sequence alignment of a protein family.
View Article and Find Full Text PDFThe energy landscape used by nature over evolutionary timescales to select protein sequences is essentially the same as the one that folds these sequences into functioning proteins, sometimes in microseconds. We show that genomic data, physical coarse-grained free energy functions, and family-specific information theoretic models can be combined to give consistent estimates of energy landscape characteristics of natural proteins. One such characteristic is the effective temperature T(sel) at which these foldable sequences have been selected in sequence space by evolution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
A challenge in molecular biology is to distinguish the key subset of residues that allow two-component signaling (TCS) proteins to recognize their correct signaling partner such that they can transiently bind and transfer signal, i.e., phosphoryl group.
View Article and Find Full Text PDFRecent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain.
View Article and Find Full Text PDFInternal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics.
View Article and Find Full Text PDFHere, 193 nm vacuum ultraviolet photodissociation (VUVPD) was used to investigate the fragmentation of hydrogen-rich radical peptide cations generated by electron transfer reactions. VUVPD offers new insight into the factors that drive radical- and photon-directed processes. The location of a basic Arg site influences photon-activated C(α)-C(O) bond cleavages of singly charged peptide radical cations, an outcome attributed to the initial conformation of the peptide as supported by molecular dynamics simulated annealing and the population of excited states upon UV excitation.
View Article and Find Full Text PDFThe effect of molecular weight on the formation of β phase poly(9,9'-dioctylfluorene) (PF8) was studied in dilute solutions. Temperature-dependent fluorescence experiments of unique synthetic batches as well as size-excluded single batches of polyflourene were studied. Each batch had unique molecular weight, tetrahedral defect concentration, and polydispersity index (PDI).
View Article and Find Full Text PDFMotivated by recent experimental efforts to measure the duration of individual folding∕unfolding transitions in proteins and RNA, here we use simulations to study the duration of a simple transition mimicking an elementary step in biopolymer folding: the closure of a loop in a long polymer chain. While the rate of such a transition is well approximated by a one-dimensional Smoluchowski model that views the end-to-end distance dynamics of a polymer chain as diffusion governed by the one-dimensional potential of mean force, the same model fails rather dramatically to describe the duration of such transitions. Instead, the latter timescale is well described by a model where the chain ends diffuse freely, uninfluenced by the average entropic force imposed by the polymer chain.
View Article and Find Full Text PDFUnderstanding the rate at which various parts of a molecular chain come together to facilitate the folding of a biopolymer (e.g., a protein or RNA) into its functional form remains an elusive goal.
View Article and Find Full Text PDFElectrode-bound, redox-reporter-modified oligonucleotides play roles in the functioning of a number of electrochemical biosensors, and thus the question of electron transfer through or from such molecules has proven of significant interest. In response, we have experimentally characterized the rate with which electrons are transferred between a methylene blue moiety on the distal end of a short, single-stranded polythymine DNA to a monolayer-coated gold electrode to which the other end of the DNA is site-specifically attached. We find that this rate scales with oligonucleotide length to the -1.
View Article and Find Full Text PDFThe dynamics of surface-attached polymers play a key role in the operation of a number of biological sensors, yet its current understanding is rather limited. Here we use computer simulations to study the dynamics of a reaction between the free end of a polymer chain and a surface, to which its other end has been attached. We consider two limiting cases, the diffusion-controlled limit, where the reaction is accomplished whenever the free chain end diffuses to within a specified distance from the surface, and the reaction-controlled limit, where slow, intrinsic reaction kinetics rather than diffusion of the chain is rate limiting.
View Article and Find Full Text PDF