Publications by authors named "Ryan Pyle"

Adversarial attacks are still a significant challenge for neural networks. Recent efforts have shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear convolutional models, we hypothesize that together with , and that this is one of the main causes of .

View Article and Find Full Text PDF

Understanding the learning dynamics and inductive bias of neural networks (NNs) is hindered by the opacity of the relationship between NN parameters and the function represented. Partially, this is due to symmetries inherent within the NN parameterization, allowing multiple different parameter settings to result in an identical output function, resulting in both an unclear relationship and redundant degrees of freedom. The NN parameterization is invariant under two symmetries: permutation of the neurons and a continuous family of transformations of the scale of weight and bias parameters.

View Article and Find Full Text PDF

Recent advances in computing algorithms and hardware have rekindled interest in developing high-accuracy, low-cost models for simulating physical systems. The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. One particularly popular technique being explored within the weather and climate modelling community is the (ESN), an attractive alternative to other well-known deep learning architectures.

View Article and Find Full Text PDF

Reservoir computing is a biologically inspired class of learning algorithms in which the intrinsic dynamics of a recurrent neural network are mined to produce target time series. Most existing reservoir computing algorithms rely on fully supervised learning rules, which require access to an exact copy of the target response, greatly reducing the utility of the system. Reinforcement learning rules have been developed for reservoir computing, but we find that they fail to converge on complex motor tasks.

View Article and Find Full Text PDF

Trial-to-trial variability is a reflection of the circuitry and cellular physiology that make up a neuronal network. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional. Previous model cortical networks cannot explain this global variability, and rather assume it is from external sources.

View Article and Find Full Text PDF

Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

View Article and Find Full Text PDF

Biological neuronal networks exhibit highly variable spiking activity. Balanced networks offer a parsimonious model of this variability in which strong excitatory synaptic inputs are canceled by strong inhibitory inputs on average, and irregular spiking activity is driven by fluctuating synaptic currents. Most previous studies of balanced networks assume a homogeneous or distance-dependent connectivity structure, but connectivity in biological cortical networks is more intricate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoj2b5o6o8gndegv20iu399tclcbkqm8h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once