Publications by authors named "Ryan Plestid"

Solid-state detectors with a low energy threshold have several applications, including searches of non-relativistic halo dark-matter particles with sub-GeV masses. When searching for relativistic, beyond-the-Standard-Model particles with enhanced cross sections for small energy transfers, a small detector with a low energy threshold may have better sensitivity than a larger detector with a higher energy threshold. In this paper, we calculate the low-energy ionization spectrum from high-velocity particles scattering in a dielectric material.

View Article and Find Full Text PDF

Millicharged particles appear in several extensions of the standard model, but have not yet been detected. These hypothetical particles could be produced by an intense proton beam striking a fixed target. We use data collected in 2020 by the SENSEI experiment in the MINOS cavern at the Fermi National Accelerator Laboratory to search for ultrarelativistic millicharged particles produced in collisions of protons in the NuMI beam with a fixed graphite target.

View Article and Find Full Text PDF

The Fermi function F(Z,E) accounts for QED corrections to beta decays that are enhanced at either small electron velocity β or large nuclear charge Z. For precision applications, the Fermi function must be combined with other radiative corrections and with scale- and scheme-dependent hadronic matrix elements. We formulate the Fermi function as a field theory object and present a new factorization formula for QED radiative corrections to beta decays.

View Article and Find Full Text PDF

Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the atmosphere. This source of monopoles is independent of cosmology, has been active throughout Earth's history, and supplies an irreducible monopole flux for all terrestrial experiments.

View Article and Find Full Text PDF

It is widely believed that mean-field theory is exact for a wide range of classical long-range interacting systems. Is this also true once quantum fluctuations have been accounted for? As a test case we study the Hamiltonian mean-field (HMF) model for a system of bosons which is predicted (according to mean-field theory) to undergo a second-order quantum phase transition at zero temperature. The ordered phase is characterized by a spontaneously broken O(2) symmetry, which, despite occurring in a one-dimensional model, is not ruled out by the Mermin-Wagner theorem due to the presence of long-range interactions.

View Article and Find Full Text PDF

The Hamiltonian mean-field (HMF) model describes particles on a ring interacting via a cosine interaction, or equivalently, rotors coupled by infinite-range XY interactions. Conceived as a generic statistical mechanical model for long-range interactions such as gravity (of which the cosine is the first Fourier component), it has recently been used to account for self-organization in experiments on cold atoms with long-range optically mediated interactions. The significance of the HMF model lies in its ability to capture the universal effects of long-range interactions and yet be exactly solvable in the canonical ensemble.

View Article and Find Full Text PDF

We set constraints and future sensitivity projections on millicharged particles (MCPs) based on electron scattering data in numerous neutrino experiments, starting with MiniBooNE and the Liquid Scintillator Neutrino Detector (LSND). Both experiments are found to provide new (and leading) constraints in certain MCP mass windows: 5-35 MeV for LSND and 100-180 MeV for MiniBooNE. Furthermore, we provide projections for the ongoing Fermilab SBN program, the Deep Underground Neutrino Experiment (DUNE), and the proposed Search for Hidden Particles (SHIP) experiment.

View Article and Find Full Text PDF

Violent relaxation is a process that occurs in systems with long-range interactions. It has the peculiar feature of dramatically amplifying small perturbations, and rather than driving the system to equilibrium, it instead leads to slowly evolving configurations known as quasistationary states that fall outside the standard paradigm of statistical mechanics. Violent relaxation was originally identified in gravity-driven stellar dynamics; here, we extend the theory into the quantum regime by developing a quantum version of the Hamiltonian mean field (HMF) model which exemplifies many of the generic properties of long-range interacting systems.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: