Publications by authors named "Ryan Philip"

Article Synopsis
  • Pyrochlore iridates are notable for studying complex phenomena due to their strong spin-orbit coupling, electronic interactions, and geometrically frustrated lattice structures.
  • In thin films of (111) YIrO with thicknesses ≤30 nm, researchers found a unique quantum disordered state at temperatures as low as 5 K, which was characterized by dispersionless magnetic excitations.
  • Below approximately 125 K, an anomalous Hall effect suggests the existence of chiral spin configurations, attributed to magnetic frustration in the lower-dimensional structure that leads to spin-liquid behavior without long-range order.
View Article and Find Full Text PDF

Symmetry plays a key role in determining the physical properties of materials. By Neumann's principle, the properties of a material remain invariant under the symmetry operations of the space group to which the material belongs. Continuous phase transitions are associated with a spontaneous reduction in symmetry.

View Article and Find Full Text PDF

Background: The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T), limited tumor microenvironment targeting, and substantial systemic toxicity.

View Article and Find Full Text PDF

Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (Oxtr) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of Oxtr neurons in order to better characterise the fluid satiation neurocircuitry in mice.

View Article and Find Full Text PDF

Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease.

View Article and Find Full Text PDF

A prominent characteristic of 2D magnetic systems is the enhanced spin fluctuations, which reduce the ordering temperature. We report that a magnetic field of only 1000th of the Heisenberg superexchange interaction can induce a crossover, which for practical purposes is the effective ordering transition, at temperatures about 6 times the Néel transition in a site-diluted two-dimensional anisotropic quantum antiferromagnet. Such a strong magnetic response is enabled because the system directly enters the antiferromagnetically ordered state from the isotropic disordered state, skipping the intermediate anisotropic stage.

View Article and Find Full Text PDF
Article Synopsis
  • Field-induced superconductivity can be enhanced by applying stress, allowing a shift between a superconducting state and a non-superconducting state.
  • Researchers demonstrated a strain-tunable superconducting spin valve using Eu(FeCo)As, achieving a significant increase in zero-resistance temperature from 4 K to 10 K.
  • The study suggests that independent control of nematic order and ferromagnetism through stress and magnetic field is key to understanding this superconductivity mechanism, highlighting the influence of the Eu dipolar field.
View Article and Find Full Text PDF

The Fe intercalated transition metal dichalcogenide (TMD), Fe_{1/3}NbS_{2}, exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron x-ray scattering measurements on both underintercalated (x=0.32) and overintercalated (x=0.

View Article and Find Full Text PDF

Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (Oxtr neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating Oxtr neurons on satiation for different types of fluids. Chemogenetic activation of Oxtr neurons in male and female transgenic Oxtr mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.

View Article and Find Full Text PDF

The origin of nematicity in FeSe remains a critical outstanding question towards understanding unconventional superconductivity in proximity to nematic order. To understand what drives the nematicity, it is essential to determine which electronic degree of freedom admits a spontaneous order parameter independent from the structural distortion. Here we use X-ray linear dichroism at the Fe K pre-edge to measure the anisotropy of the 3d orbital occupation as a function of in situ applied stress and temperature across the nematic transition.

View Article and Find Full Text PDF

Spin-orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy-efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in-plane magnetic switching.

View Article and Find Full Text PDF

We report on the use of leaf diffuse reflectance spectroscopy for plant disease detection. A smartphone-operated, compact diffused reflectance spectrophotometer is used for field collection of leaf diffuse reflectance spectra to enable pre-symptomatic detection of the progression of potato late blight disease post inoculation with oomycete pathogen . Neural-network-based analysis predicts infection with >96% accuracy, only 24 h after inoculation with the pathogen, and nine days before visual late blight symptoms appear.

View Article and Find Full Text PDF

The number of atomic layers confined in a two-dimensional structure is crucial for the electronic and magnetic properties. Single-layer and bilayer J_{eff}=1/2 square lattices are well-known examples where the presence of the extra layer turns the XY anisotropy to the c-axis anisotropy. We report on experimental realization of a hybrid SrIrO_{3}/SrTiO_{3} superlattice that integrates monolayer and bilayer square lattices in one layered structure.

View Article and Find Full Text PDF

Symmetric anisotropic interaction can be ferromagnetic and antiferromagnetic at the same time but for different crystallographic axes. We show that the competition of anisotropic interactions of orthogonal irreducible representations can be a general route to obtain new exotic magnetic states. We demonstrate it here by observing the emergence of a continuously tunable 12-layer spatial spin modulation when distorting the square-lattice planes in the quasi-two-dimensional antiferromagnetic Sr_{2}IrO_{4} under in situ shear strain.

View Article and Find Full Text PDF

The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films.

View Article and Find Full Text PDF

Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e.

View Article and Find Full Text PDF

Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(FeCo)As. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases.

View Article and Find Full Text PDF

Porcine Circovirus type 2 (PCV2) associated disease is one of the most economically important swine diseases worldwide. Vaccines reduce PCV2 disease by inducing humoral immunity (neutralizing antibodies) and cell-mediated immunity (CMI) but may be improved by optimizing the immune response they induce. This study evaluated immune responses to a trivalent inactivated Porcine Circovirus (PCV) Type 1-Type 2a chimera (cPCV2a), cPCV2b and Mycoplasma hyopneumoniae (MH) (an experimental serial of Fostera® Gold PCV MH, also marketed as Circomax® Myco) vaccine or a bivalent recombinant PCV2a baculovirus expressed ORF2 capsid plus MH vaccine (Circumvent® PCV-M G2).

View Article and Find Full Text PDF

Located in the midline lamina terminalis of the anterior wall of the third ventricle, the median preoptic nucleus is a thin elongated nucleus stretching around the rostral border of the anterior commissure. Its neuronal elements, composed of various types of excitatory glutamatergic and inhibitory GABAergic neurons, receive afferent neural signals from (1) neighboring subfornical organ and organum vasculosum of the lamina terminalis related to plasma osmolality and hormone concentrations, e.g.

View Article and Find Full Text PDF

Protein O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), an essential post-translational as well as cotranslational modification, is the attachment of β-D-N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic proteins. An aberrant O-GlcNAc profile on certain proteins has been implicated in metabolic diseases such as diabetes and cancer. Inhibitors of O-GlcNAc transferase (OGT) are valuable tools to study the cell biology of protein O-GlcNAc modification.

View Article and Find Full Text PDF

Materials with strong magnetoresistive responses are the backbone of spintronic technology, magnetic sensors, and hard drives. Among them, manganese oxides with a mixed valence and a cubic perovskite structure stand out due to their colossal magnetoresistance (CMR). A double exchange interaction underlies the CMR in manganates, whereby charge transport is enhanced when the spins on neighboring Mn and Mn ions are parallel.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method for creating self-assembled periodic nanostructures is presented, utilizing martensitic phase transformations in a thin film of perovskite SrSnO.
  • The resulting structures feature varying dielectric properties, which can be adjusted through chemical doping, strain engineering, temperature, and laser wavelength.
  • This approach opens up possibilities for "built-to-order" nanostructures, aimed at specific optoelectronic applications.
View Article and Find Full Text PDF

The O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a master regulator of installing O-GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O-GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer.

View Article and Find Full Text PDF

Fe-based superconductors exhibit a diverse interplay between charge, orbital, and magnetic ordering. Variations in atomic geometry affect electron hopping between Fe atoms and the Fermi surface topology, influencing magnetic frustration and the pairing strength through changes of orbital overlap and occupancies. Here, we experimentally demonstrate a systematic approach to realize superconductivity without chemical doping in BaFeAs, employing geometric design within an epitaxial heterostructure.

View Article and Find Full Text PDF

Effective nonmagnetic control of the spin structure is at the forefront of the study for functional quantum materials. This study demonstrates that, by applying an anisotropic strain up to only 0.05%, the metamagnetic transition field of spin-orbit-coupled Mott insulator Sr IrO can be in situ modulated by almost 300%.

View Article and Find Full Text PDF