Background: A dual filtration-based method for determination of serum labile bound copper (LBC) and LBC fraction (LBC/total copper) was developed. Reduced total copper, elevated LBC, and elevated LBC fraction have been reported in Wilson disease (WD).
Methods: To evaluate the diagnostic performance of these markers, samples were obtained from 21 WD treatment-naïve (WD-TN, no WD treatment or <28 days of treatment) patients, 46 WD standard-of-care-treated (WD-SOC) patients, along with 246 patients representing other potential disorders of copper status.
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones.
View Article and Find Full Text PDFHypophosphatasia (HPP) is a rare, inherited metabolic disease caused by deficient activity of tissue-nonspecific alkaline phosphatase (TNSALP). Efzimfotase alfa (ALXN1850) is a second-generation TNSALP enzyme replacement therapy in development for HPP. This first-in-human open-label, dose-escalating phase 1 trial evaluated efzimfotase alfa safety, tolerability, pharmacokinetics, pharmacodynamics, and immunogenicity.
View Article and Find Full Text PDFTo investigate the pharmacokinetics and pharmacodynamics of the approved 900/1,200 mg dosing regimen for the terminal complement component 5 (C5) inhibitor eculizumab in patients with neuromyelitis optica spectrum disorder (NMOSD). Data were analyzed from 95 patients with aquaporin-4-IgG-positive NMOSD who received eculizumab during the PREVENT study (ClinicalTrials.gov: NCT01892345).
View Article and Find Full Text PDFTo investigate the pharmacokinetics, pharmacodynamics, and exposure-response of the approved 900/1,200 mg dosing regimen for the terminal complement component 5 (C5) inhibitor eculizumab in patients with generalized myasthenia gravis (gMG). The analysis used data from 62 patients aged ≥ 18 years with anti-acetylcholine receptor (AChR) antibody-positive refractory gMG who received eculizumab during the REGAIN study (ClinicalTrials.gov: NCT01997229).
View Article and Find Full Text PDFHypophosphatasia is a rare metabolic disease resulting from variant(s) in the gene-encoding tissue-nonspecific isozyme of alkaline phosphatase. In this 13-week, phase 2a, multicenter, randomized, open-label, dose-response study (ClinicalTrials.gov: NCT02797821), the pharmacokinetics of asfotase alfa, an enzyme replacement therapy approved for the treatment of hypophosphatasia, was assessed in adult patients with pediatric-onset hypophosphatasia.
View Article and Find Full Text PDFThe α-hydroxydepsipeptide 3-carboxyphenyl N-(phenylacetyl)-α-hydroxyglycinate (5) is a quite effective substrate of serine β-lactamases and low molecular mass DD-peptidases. The class C P99 and ampC β-lactamases catalyze the hydrolysis of both enantiomers of 5, although they show a strong preference for one of them. The class A TEM-2 and class D OXA-1 β-lactamases and the Streptomyces R61 and Actinomadura R39 DD-peptidases catalyze hydrolysis of only one enantiomer of at any significant rate.
View Article and Find Full Text PDFBiochemistry
December 2010
O-(1-Carboxy-1-alkyloxycarbonyl) hydroxamates were found to spontaneously decarboxylate in aqueous neutral buffer to form O-(2-hydroxyalkylcarbonyl) hydroxamates. While the former molecules do not react rapidly with serine β-lactamases, the latter are quite good substrates of representative class A and C, but not D, enzymes, and particularly of a class C enzyme. The enzymes catalyze hydrolysis of these compounds to a mixture of the α-hydroxy acid and hydroxamate.
View Article and Find Full Text PDFThe class C serine beta-lactamase of Enterobacter cloacae P99 is irreversibly inhibited by O-aryloxycarbonyl hydroxamates. A series of these new inhibitors has been prepared to investigate the kinetics and mechanism of the inactivation reaction. A pH-rate profile for the reaction indicated that the reactive form of the inhibitor is neutral rather than anionic.
View Article and Find Full Text PDFThe UV-Vis and fluorescence spectra of free base and diprotonated meso-tetrathien-2'-ylporphyrins are, when compared to the spectra of meso-tetra-phenyl- or even -thien-3'-ylporphyrins, characterized by surprisingly large red-shifts. A comparison of the optical spectra and the computed rotational barriers for these meso-aryl-substituted porphyrins and a detailed conformational analysis of the single crystal X-ray structure of a diprotonated meso-tetrathien-2'-ylporphyrin suggest that the origin of the altered electronic properties of meso-tetrathien-2'-ylporphyrins are mainly due to the contribution of conformations in which the thienyl groups adopt idealized co-planar arrangements with the porphyrin ring. These conformations allow an efficient extension of the porphyrinic pi-system through conjugation.
View Article and Find Full Text PDF