Objective: Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity.
View Article and Find Full Text PDFLupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice.
View Article and Find Full Text PDFIntroduction: Workplace exposure to respirable crystalline silica (cSiO) has been epidemiologically linked to lupus. Consistent with this, repeated subchronic intranasal cSiO instillation in lupus-prone NZBWF1 mice induces inflammation-/autoimmune-related gene expression, ectopic lymphoid tissue (ELT), autoantibody (AAb) production in the lung within 5 to 13 wk followed systemic AAb increases and accelerated onset and progression of glomerulonephritis within 13 to 17 wk. Interestingly, dietary docosahexaenoic acid (DHA) supplementation suppresses these pathologic effects, but the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFIntroduction: Lipopolysaccharide (LPS)-accelerated autoimmune glomerulonephritis (GN) in NZBWF1 mice is a preclinical model potentially applicable for investigating lipidome-modulating interventions against lupus. LPS can be expressed as one of two chemotypes: smooth LPS (S-LPS) or rough LPS (R-LPS) which is devoid of O-antigen polysaccharide sidechain. Since these chemotypes differentially affect toll-like receptor 4 (TLR4)-mediated immune cell responses, these differences may influence GN induction.
View Article and Find Full Text PDFFront Immunol
November 2022
Autoimmune diseases can be triggered by environmental toxicants such as crystalline silica dust (cSiO). Here, we characterized the dose-dependent immunomodulation and toxicity of the glucocorticoid (GC) prednisone in a preclinical model that emulates onset and progression of cSiO-triggered lupus. Two cohorts of 6-wk-old female NZBWF1 mice were fed either control AIN-93G diet or one of three AIN-93G diets containing prednisone at 5, 15, or 50 mg/kg diet which span human equivalent oral doses (HED) currently considered to be low (PL; 5 mg/d HED), moderate (PM; 14 mg/d HED), or high (PH; 46 mg/d HED), respectively.
View Article and Find Full Text PDFAlthough exposure to ambient particulate matter (PM) is linked to asthma, the health effects of co-existing vapor-phase organic pollutants (vapor) and their combined effects with PM on this disease are poorly understood. We used a murine asthma model to test the hypothesis that exposure to vapor would enhance allergic sensitization and this effect would be further strengthened by co-existing PM. We found that vapor and PM each individually exerted adjuvant effects on OVA sensitization.
View Article and Find Full Text PDFWorkplace exposure to respirable crystalline silica dust (cSiO) has been etiologically linked to the development of lupus and other human autoimmune diseases. Lupus triggering can be recapitulated in female NZBWF1 mice by four weekly intranasal instillations with 1 mg cSiO This elicits inflammatory/autoimmune gene expression and ectopic lymphoid structure (ELS) development in the lung within 1 week, ultimately driving early onset of systemic autoimmunity and glomerulonephritis. Intriguingly, dietary supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA) found in fish oil, beginning 2 week prior to cSiO challenge, prevented inflammation and autoimmune flaring in this novel model.
View Article and Find Full Text PDFOccupational exposure to crystalline silica (cSiO) is etiologically associated with systemic lupus erythematosus (lupus) and other autoimmune diseases. cSiO's autoimmune effects in humans can be mimicked chronically in female lupus-prone NZBWF1 mice following repeated exposure to the particle. However, the immediate and short-term effects of cSiO in this widely used model of autoimmune disease are not well-understood.
View Article and Find Full Text PDFBackground: Epidemiological studies support the hypothesis that diabetes alters pulmonary responses to air pollutants like ozone (). The mechanism(s) underlying these associations and potential links among diabetes, , and lung inflammation and remodeling are currently unknown.
Objectives: The goal was to determine whether pulmonary responses to repetitive ozone exposures are exacerbated in murine strains that are hyperglycemic and insulin resistant.
Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA).
View Article and Find Full Text PDFMice exposed to the air pollutant ozone develop eosinophilic rhinitis that is mediated by group 2, GATA-3+, innate lymphoid cells (ILC2s). In the present study, we determined the influx, persistence, and recall of nasal ILC2s and eosinophils in ozone-exposed mice. C57BL/6 (T/B cell sufficient, ILC sufficient), Rag2 (T/B cell deficient, ILC sufficient), and Rag2Il2rg (T/B cell deficient, ILC deficient) mice were exposed to 0 or 0.
View Article and Find Full Text PDFExposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 mice (devoid of T and B cells), and ILC-deficient Rag2Il2rg mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.
View Article and Find Full Text PDFOzone is an irritating gas found in photochemical smog. Epidemiological associations have been made between the onset of asthma and childhood exposures to increasing levels of ambient ozone (i.e.
View Article and Find Full Text PDFInhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone.
View Article and Find Full Text PDFBackground: Inflammation and oxidative stress play critical roles in the pathogenesis of inhaled air pollutant-mediated metabolic disease. Inflammation in the adipose tissues niches are widely believed to exert important effects on organ dysfunction. Recent data from both human and animal models suggest a role for inflammation and oxidative stress in epicardial adipose tissue (EAT) as a risk factor for the development of cardiovascular disease.
View Article and Find Full Text PDFBackground: With the increase in production and use of engineered nanoparticles (NP; ≤ 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP.
View Article and Find Full Text PDFBackground: Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2010
We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice.
View Article and Find Full Text PDF