Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures.
View Article and Find Full Text PDFThe senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue.
View Article and Find Full Text PDFOlfactory receptor (OR) expression requires the transcriptional activation of 1 out of 1,000s of OR alleles and a feedback signal that preserves this transcriptional choice. The mechanism by which olfactory sensory neurons (OSNs) detect ORs to signal to the nucleus remains elusive. Here, we show that OR proteins generate this feedback by activating the unfolded protein response (UPR).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Predictions of microRNA-mRNA interactions typically rely on bioinformatic algorithms, but these algorithms only suggest the possibility of microRNA binding and may miss important interactions as well as falsely predict others. We developed an affinity purification approach to empirically identify microRNAs associated with the 3'UTR of the mRNA encoding Hand2, a transcription factor essential for cardiac development. In addition to miR-1, a known regulator of Hand2 expression, we determined that the Hand2 3'UTR also associated with miR-133a, a microRNA cotranscribed with miR-1 in cardiac and muscle cells.
View Article and Find Full Text PDF