A 3D hybrid zinc formate framework, [NH(4)][Zn(HCOO)(3)], possessing an acs topology, shows a high degree of mechanical anisotropy and negative linear compressibility (NLC) along its c axis. High-pressure single-crystal X-ray diffraction studies and density functional theory calculations indicate that contraction of the Zn-O bonds and tilting of the formate ligands with increasing pressure induce changes in structure that result in shrinkage of the a and b axes and the NLC effect along c.
View Article and Find Full Text PDFHybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.
View Article and Find Full Text PDFA 2D homochiral inorganic-organic framework {[Mn(NPTA)(4,4'-bpy)(H(2)O)]·(H(2)O)(2)}(n) was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4'-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4'-bpy = 4,4'-bipyridine). The isomorphous Zn(ii) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the syn-anti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4'-bpy ligands to generate a homochiral layered framework.
View Article and Find Full Text PDF