Publications by authors named "Ryan P Browne"

Unlabelled: Mixtures of multivariate leptokurtic-normal distributions have been recently introduced in the clustering literature based on mixtures of elliptical heavy-tailed distributions. They have the advantage of having parameters directly related to the moments of practical interest. We derive two estimation procedures for these mixtures.

View Article and Find Full Text PDF

An expanded family of mixtures of multivariate power exponential distributions is introduced. While fitting heavy-tails and skewness have received much attention in the model-based clustering literature recently, we investigate the use of a distribution that can deal with both varying tail-weight and peakedness of data. A family of parsimonious models is proposed using an eigen-decomposition of the scale matrix.

View Article and Find Full Text PDF

A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the generalized inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward.

View Article and Find Full Text PDF

We introduce a mixture model whereby each mixture component is itself a mixture of a multivariate Gaussian distribution and a multivariate uniform distribution. Although this model could be used for model-based clustering (model-based unsupervised learning) or model-based classification (model-based semi-supervised learning), we focus on the more general model-based classification framework. In this setting, we fit our mixture models to data where some of the observations have known group memberships and the goal is to predict the memberships of observations with unknown labels.

View Article and Find Full Text PDF