Background: The endothelial glycocalyx is an important component of the vascular permeability barrier, forming a scaffold that allows serum proteins to create a gel-like layer on the endothelial surface and transmitting mechanosensing and mechanotransduction information that influences permeability. During acute inflammation, the glycocalyx is degraded, changing how it interacts with serum proteins and colloids used during resuscitation and altering its barrier properties and biomechanical characteristics. We quantified changes in the biomechanical properties of lung endothelial glycocalyx during control conditions and after degradation by hyaluronidase using biophysical techniques that can probe mechanics at (1) the aqueous/glycocalyx interface and (2) inside the glycocalyx.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2011