Publications by authors named "Ryan Nasti"

There is an expanding need to modify plant genomes to create new plant germplasm that advances both basic and applied plant research. Most current methods for plant genome modification involve regenerating plants from genetically modified cells in tissue culture, which is technically challenging, expensive and time consuming, and works with limited plant species or genotypes. Herein, we describe two Agrobacterium-based methods for creating genetic modifications on either sterilely grown or soil-grown Nicotiana benthamiana plants.

View Article and Find Full Text PDF

The production of transgenic or gene edited plants requires considerable time and effort. It is of value to know at the onset of a project whether the transgenes or gene editing reagents are functioning as predicted. To test molecular reagents transiently, we implemented an improved, -based co-culture method called Fast-TrACC (Fast Treated Agrobacterium Co-Culture).

View Article and Find Full Text PDF

Crop improvement relies heavily on genetic variation that arises spontaneously through mutation. Modern breeding methods are very adept at combining this genetic variation in ways that achieve remarkable improvements in plant performance. Novel traits have also been created through mutation breeding and transgenesis.

View Article and Find Full Text PDF

Plant gene editing is typically performed by delivering reagents such as Cas9 and single guide RNAs to explants in culture. Edited cells are then induced to differentiate into whole plants by exposure to various hormones. The creation of edited plants through tissue culture is often inefficient, time-consuming, works for only limited species and genotypes, and causes unintended changes to the genome and epigenome.

View Article and Find Full Text PDF

U2 auxiliary factor 1 (U2AF1) functions in 3'-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes.

View Article and Find Full Text PDF