Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2024
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e.
View Article and Find Full Text PDFObtaining extensive sequencing of an intact protein is essential in order to simultaneously determine both the nature and exact localization of chemical and genetic modifications which distinguish different proteoforms arising from the same gene. To effectively achieve such characterization, it is necessary to take advantage of the analytical potential offered by the top-down mass spectrometry approach to protein sequence analysis. However, as a protein increases in size, its gas-phase dissociation produces overlapping, low signal-to-noise fragments.
View Article and Find Full Text PDF