Publications by authors named "Ryan Merry"

The USDA Soybean Isoline Collection has been an invaluable resource for the soybean genetics and breeding community. This collection, established in 1972, consists of 611 near-isogenic lines (NILs) carrying one or multiple genes conferring traits that had been determined to exhibit Mendelian inheritance. It has been used in multiple studies on the genetic basis, physiology, and agronomy of these qualitative traits.

View Article and Find Full Text PDF

The soybean ( L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States.

View Article and Find Full Text PDF

CORE IDEAS: 'Fiskeby III' harbors a combination of abiotic stress traits, including iron deficiency chlorosis (IDC) tolerance. An IDC quantitative trait locus on chromosome Gm05 was identified in genome-wide association studies and biparental populations. Fine-mapping resolved a 137-kb interval containing strong candidate genes.

View Article and Find Full Text PDF

The β-ketoacyl-[acyl carrier protein] synthase 1 () gene has been shown in model plant systems to be critical for the conversion of sucrose to oil. A previous study characterized the morphological and seed composition phenotypes associated with a reciprocal chromosomal translocation that disrupted one of the genes in soybean. The principle findings of this work included a wrinkled seed phenotype, an increase in seed sucrose, a decrease in seed oil, and a low frequency of transmission of the translocation.

View Article and Find Full Text PDF
Article Synopsis
  • Evergreens like eastern white pine and white spruce struggle with photosynthesis in winter, which is measured using chlorophyll fluorescence called Fv/Fm.
  • The study found that white spruce recovers from winter stress three times faster than eastern white pine, and they have different ways of recovering.
  • Both trees kept important photosynthetic proteins during winter, but their recovery speed and the way they lose certain modifications when warming up were different.
View Article and Find Full Text PDF