Publications by authors named "Ryan McGuire"

Herein, we describe nickel oxidative addition complexes (Ni-OACs) of drug-like molecules as a platform to rapidly generate lead candidates with enhanced C() fraction. The potential of Ni-OACs to access new chemical space has been assessed not only in C()-C() couplings but also in additional bond formations without recourse to specialized ligands and with improved generality when compared to Ni-catalyzed reactions. The development of an automated diversification process further illustrates the robustness of Ni-OACs, thus offering a new gateway to expedite the design-make-test-analyze (DMTA) cycle in drug discovery.

View Article and Find Full Text PDF

Background: Repetitive application of high forces to the shoulder and scapular musculature during the pitching motion over the course of a collegiate baseball season may lead to changes in strength and increased fatigue, potentially predisposing pitching athletes to injury. The purpose of this study was to investigate periscapular strength profiles of Division I collegiate baseball players over the course of a season.

Methods: This study was a retrospective data analysis of 18 Division I baseball pitchers.

View Article and Find Full Text PDF

We consider the science, policy, and implementation (science-policy-society interface) issues around the agrifood system and the UK's transition to net zero. We conclude that agrifood policy should become more targeted, and the marriage of top-down and bottom-up approaches is key to co-create a pathway that is plausible for each stakeholder.

View Article and Find Full Text PDF

Notwithstanding recent developments in nickel-catalyzed C-O cross-coupling chemistry, such transformations of substituted phenols and (hetero)aryl chlorides with a useful reaction scope have yet to be reported. In this work, we disclose the results of catalyst screening that allowed the identification of PhPAd-DalPhos/NiCOD as an effective catalyst system under thermal conditions for the O-arylation of substituted phenols with chloropyridine-type electrophiles, leading to pyridyl--aryl frameworks that are found in active pharmaceutical ingredients.

View Article and Find Full Text PDF

Herein we disclose the synthesis of sterically encumbered dialkylnickel(II) complexes bearing 2,9-dimethyl-1,10-phenanthroline ligands. A comparison with their unsubstituted analogues by both X-ray crystallography and theoretical calculations revealed significant distortions in their molecular structures. Eyring plots along with stoichiometric and photoexcitation studies revealed that sterically encumbered dialkylnickel(II) complexes enable facile C( )-C( ) reductive elimination, thus offering an improved understanding of Ni catalysis.

View Article and Find Full Text PDF

We report on our successful development of the first metal-catalyzed mono-α-arylation of carbonyl compounds employing a soluble organic base. The scope of these Ni/DalPhos-catalyzed transformations encompasses a range of (hetero)aryl halides (Cl, Br, I) and phenol-derived electrophiles (sulfonates, carbonates, carbamates, sulfamates), including active pharmaceutical ingredients (chloroquine, clozapine), in combination with the typically problematic feedstock small molecule substrates acetone, dimethylacetamide, and for the first time with any metal catalyst/base, ethyl acetate.

View Article and Find Full Text PDF

The C-N cross-coupling of (hetero)aryl (pseudo)halides with NH substrates employing nickel catalysts and organic amine bases represents an emergent strategy for the sustainable synthesis of (hetero)anilines. However, unlike protocols that rely on photoredox/electrochemical/reductant methods within Ni cycles, the reaction steps that comprise a putative Ni C-N cross-coupling cycle for a thermally promoted catalyst system using organic amine base have not been elucidated. Here we disclose an efficient new nickel-catalyzed protocol for the C-N cross-coupling of amides and 2'-(pseudo)halide-substituted acetophenones, for the first time where the (pseudo)halide is chloride or sulfonate, which makes use of the commercial bisphosphine ligand PAd2-DalPhos (L4) in combination with an organic amine base/halide scavenger, leading to 4-quinolones.

View Article and Find Full Text PDF

Infection caused by carbapenem-resistant (CR) organisms is a rising problem in the United States. While the risk factors for antibiotic resistance are well known, there remains a large need for the early identification of antibiotic-resistant infections. Using machine learning (ML), we sought to develop a prediction model for carbapenem resistance.

View Article and Find Full Text PDF

The Ni-catalyzed N-arylation of β-fluoroalkylamines with broad scope is reported for the first time. Use of the air-stable pre-catalyst (PAd2-DalPhos)Ni(o-tol)Cl allows for reactions to be conducted at room temperature (25 °C, NaOtBu), or by use of a commercially available dual-base system (100 °C, DBU/NaOTf), to circumvent decomposition of the N-(β-fluoroalkyl)aniline product. The mild protocols disclosed herein feature broad (hetero)aryl (pseudo)halide scope (X=Cl, Br, I, and for the first time phenol-derived electrophiles), encompassing base-sensitive substrates and enantioretentive transformations, in a manner that is unmatched by any previously reported catalyst system.

View Article and Find Full Text PDF

Background: Vagus nerve stimulation (VNS) modifies brain rhythms in the locus coeruleus (LC) via the solitary nucleus. Degeneration of the LC in Parkinson's disease (PD) is an early catalyst of the spreading neurodegenerative process, suggesting that stimulating LC output with VNS has the potential to modify disease progression. We previously showed in a lesion PD model that VNS delivered twice daily reduced neuroinflammation and motor deficits, and attenuated tyrosine hydroxylase (TH)-positive cell loss.

View Article and Find Full Text PDF

The development of Ni-catalyzed C-N cross-couplings of sulfonamides with (hetero)aryl chlorides is reported. These transformations, which were previously achievable only with Pd catalysis, are enabled by use of air-stable (L)NiCl(o-tol) pre-catalysts (L=PhPAd-DalPhos and PAd2-DalPhos), without photocatalysis. The collective scope of (pseudo)halide electrophiles (X=Cl, Br, I, OTs, and OC(O)NEt ) demonstrated herein is unprecedented for any reported catalyst system for sulfonamide C-N cross-coupling (Pd, Cu, Ni, or other).

View Article and Find Full Text PDF

Communication gaps when patients transition from hospital to either home or community can be problematic. Partnership between Toronto Central Local Health Integration Network (TC LHIN) and OpenLab addressed this through the Patient-Oriented Discharge Summaries (PODS) project. From January through March 2015, eight hospital departments across Toronto came together to implement the PODS, a tool previously developed through a co-design process involving patients, caregivers and providers.

View Article and Find Full Text PDF

Purpose: This study investigates the performance of a cardiac-based seizure detection algorithm (CBSDA) that automatically triggers VNS (NCT01325623).

Methods: Thirty-one patients with drug resistant epilepsy were evaluated in an epilepsy monitoring unit (EMU) to assess algorithm performance and near-term clinical benefit. Long-term efficacy and safety were evaluated with combined open and closed-loop VNS.

View Article and Find Full Text PDF

The head bobber transgenic mouse line, produced by pronuclear integration, exhibits repetitive head tilting, circling behavior, and severe hearing loss. Transmitted as an autosomal recessive trait, the homozygote has vestibular and cochlea inner ear defects. The space between the semicircular canals is enclosed within the otic capsule creating a vacuous chamber with remnants of the semicircular canals, associated cristae, and vestibular organs.

View Article and Find Full Text PDF

Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells.

View Article and Find Full Text PDF

A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster.

View Article and Find Full Text PDF

The solute carrier transmembrane protein prestin (SLC26A5) drives an active electromechanical transduction process in cochlear outer hair cells that increases hearing sensitivity and frequency discrimination in mammals. A large intramembraneous charge movement, the nonlinear capacitance (NLC), is the electrical signature of prestin function. The transmembrane domain (TMD) helices and residues involved in the intramembrane charge displacement remain unknown.

View Article and Find Full Text PDF