The coupled cluster singles and doubles (CCSD) algorithm in the NWChem software package has been optimized to alleviate the communication bottleneck. This optimization provided a 2-fold to 5-fold speedup in the CCSD iteration time depending on the problem size and available memory, and improved the CCSD scaling to 20 000 nodes of the NCSA Blue Waters supercomputer. On 20 000 XE6 nodes of Blue Waters, a complete conventional CCSD(T) calculation of a system encountering 1042 basis functions and 103 occupied correlated orbitals obtained a performance of 0.
View Article and Find Full Text PDFWater hexamers provide a critical testing ground for validating potential energy surface predictions because they contain structural motifs not present in smaller clusters. We tested the ability of 11 density functionals (four of which are local and seven of which are nonlocal) to accurately predict the relative energies of a series of low-lying water hexamers, relative to the CCSD(T)/aug'-cc-pVTZ level of theory, where CCSD(T) denotes coupled cluster theory with an interative treatment of single and double excitations and a quasi-perturbative treatment of connected triple excitations. Five of the density functionals were tested with two different basis sets, making a total of 16 levels of density functional theory (DFT) tested.
View Article and Find Full Text PDFPolarization effects in aqueous and nonaqueous solutions were analyzed for nine neutral and three charged organic solutes by the SM8 universal implicit solvation model and class IV partial atomic charges based on Charge Model 4M (CM4M) with the M06-2X density functional. The CM4M partial atomic charges in neutral and ionic solutes and in the corresponding clustered solutes (supersolutes), which included one solute molecule and one or two solvent molecules, were modeled in three solvents (benzene, methylene chloride, and water) and compared to those in the gas phase. The use of the supersolute approach (microsolvation) allows one to account for charge transfer from the solute to the solvent, and we find charge transfers as large as 0.
View Article and Find Full Text PDFPartial atomic charges provide the most widely used model for molecular charge polarization, and Charge Model 4 (CM4) is designed to provide partial atomic charges that correspond to an accurate charge distribution, even though they may be calculated with polarized double-ζ basis sets with any density functional. Here we extend CM4 to six additional basis sets, and we present a model (CM4M) that is individually optimized for the M06 suite of density functionals for ten basis sets. These charge models yield class IV partial atomic charges by mapping from those obtained with Löwdin or redistributed Löwdin population analyses of density functional electronic charge distributions.
View Article and Find Full Text PDFA new universal continuum solvation model (where "universal" denotes applicable to all solvents), called SM8, is presented. It is an implicit solvation model, also called a continuum solvation model, and it improves on earlier SMx universal solvation models by including free energies of solvation of ions in nonaqueous media in the parametrization. SM8 is applicable to any charged or uncharged solute composed of H, C, N, O, F, Si, P, S, Cl, and/or Br in any solvent or liquid medium for which a few key descriptors are known, in particular dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters.
View Article and Find Full Text PDFUsing newly developed correlation consistent basis sets for gold, the relative energies for the neutral Au8 geometric isomers have been re-evaluated and the vertical ionization potentials calculated. The results using the correlation consistent basis sets show that second-order Moller-Plesset perturbation theory calculations strongly favor nonplanar Au8 structures for all basis sets that were employed. However, the general trend at the coupled cluster singles and doubles with perturbative triples level of theory is to increasingly favor planar structures as the basis set is improved.
View Article and Find Full Text PDFFull geometry optimizations using both singles and doubles coupled cluster theory with perturbative triple excitations, CCSD(T), and second order multi-reference perturbation theory, MRMP2, have been employed to predict the structure of Si9H12, a cluster commonly used in calculations to represent the Si(100) surface. Both levels of theory predict the structure of this cluster to be symmetric (not buckled), and no evidence for a buckled (asymmetric) structure is found at either level of theory.
View Article and Find Full Text PDFA parallel algorithm for solving the coupled-perturbed MCSCF (CPMCSCF) equations and analytic nuclear second derivatives of CASSCF wave functions is presented. A parallel scheme for evaluating derivative integrals and their subsequent use in constructing other derivative quantities is described. The task of solving the CPMCSCF equations is approached using a parallelization scheme that partitions the electronic hessian matrix over all processors as opposed to simple partitioning of the 3 N solution vectors among the processors.
View Article and Find Full Text PDFSeveral levels of theory, including both Gaussian-based and plane wave density functional theory (DFT), second-order perturbation theory (MP2), and coupled cluster methods (CCSD(T)), are employed to study Au6 and Au8 clusters. All methods predict that the lowest energy isomer of Au6 is planar. For Au8, both DFT methods predict that the two lowest isomers are planar.
View Article and Find Full Text PDFThis work presents a study of reactions between neutral and negatively charged Au(n) clusters (n=2,3) and molecular hydrogen. The binding energies of the first and second hydrogen molecule to the gold clusters were determined using density functional theory (DFT), second order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. It is found that molecular hydrogen easily binds to neutral Au(2) and Au(3) clusters with binding energies of 0.
View Article and Find Full Text PDFA two-level hierarchical scheme, generalized distributed data interface (GDDI), implemented into GAMESS is presented. Parallelization is accomplished first at the upper level by assigning computational tasks to groups. Then each group does parallelization at the lower level, by dividing its task into smaller work loads.
View Article and Find Full Text PDFAb initio molecular orbital theory has been used to calculate accurate enthalpies of formation and adiabatic electron affinities or ionization potentials for N3, N3-, N5+, and N5- from total atomization energies. The calculated heats of formation of the gas-phase molecules/ions at 0 K are DeltaHf(N3(2Pi)) = 109.2, DeltaHf(N3-(1sigma+)) = 47.
View Article and Find Full Text PDF