The mechanism of the copolymerization of cyclohexene oxide and carbon dioxide to afford poly(cyclohexylene)carbonate catalyzed by (salen)CrN3 (H2salen = N,N,'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylene-diimine) in the presence of a broad range of cocatalysts has been studied. We have previously established the rate of copolymer formation to be very sensitive to both the electron-donating ability of the salen ligand and the [cocatalyst], where N-heterocyclic amines, phosphines, and ionic salts were effective cocatalysts. Significant increases in the rate of copolymerization have been achieved with turnover frequencies of approximately 1200 h(-1), thereby making these catalyst systems some of the most active and robust thus far uncovered.
View Article and Find Full Text PDFThe design of efficient metal catalysts for the selective coupling of epoxides and carbon dioxide to afford completely alternating copolymers has made significant gains over the past decade. Hence, it is becoming increasingly clear that this "greener" route to polycarbonates has the potential to supplement or supplant current processes for the production of these important thermoplastics, which involve the condensation polymerization of diols and phosgene or organic carbonates. On the basis of the experiences in our laboratory, this Account summarizes our efforts at optimizing (salen)CrIIIX catalysts for the selective formation of polycarbonates from alicyclic and aliphatic epoxides with CO2.
View Article and Find Full Text PDFA detailed mechanistic study into the copolymerization of CO2 and cyclohexene oxide utilizing CrIII(salen)X complexes and N-methylimidazole, where H2salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediimine and other salen derivatives and X = Cl or N3, has been conducted. By studying salen ligands with various groups on the diimine backbone, we have observed that bulky groups oriented perpendicular to the salen plane reduce the activity of the catalyst significantly, while such groups oriented parallel to the salen plane do not retard copolymer formation. This is not surprising in that the mechanism for asymmetric ring opening of epoxides was found to occur in a bimetallic fashion, whereas these perpendicularly oriented groups along with the tert-butyl groups on the phenolate rings produce considerable steric requirements for the two metal centers to communicate and thus initiate the copolymerization process.
View Article and Find Full Text PDFThe copolymerization of CO(2) and cyclohexene or propylene oxide has been examined employing (salen)Cr(III)Nu complexes (Nu = Cl or N(3)) as catalysts. The addition of various cocatalysts, including phosphines and PPN+ or Bu4N+ Cl- salts serves to greatly enhance the rate of copolymer production. In these instances, the mechanism of the initiation step appears to be unimolecular in catalyst concentration, unlike the bimolecular process cocatalyzed by N-methylimidazole.
View Article and Find Full Text PDF