Publications by authors named "Ryan M Fryer"

Portal hypertension (PT) commonly occurs in cirrhosis. Nitric oxide (NO) imbalance contributes to PT via reduced soluble guanylyl cyclase (sGC) activation and cGMP production, resulting in vasoconstriction, endothelial cell dysfunction, and fibrosis. We assessed the effects of BI 685509, an NO-independent sGC activator, on fibrosis and extrahepatic complications in a thioacetamide (TAA)-induced cirrhosis and PT model.

View Article and Find Full Text PDF

Activation of soluble guanylate cyclase (sGC) to restore cyclic guanosine monophosphate (cGMP) and improve functionality of nitric oxide (NO) pathways impaired by oxidative stress is a potential treatment of diabetic and chronic kidney disease. We report the pharmacology of BI 685509, a novel, orally active small molecule sGC activator with disease-modifying potential. BI 685509 and human sGC 1/1 heterodimer containing a reduced heme group produced concentration-dependent increases in cGMP that were elevated modestly by NO, whereas heme-free sGC and BI 685509 greatly enhanced cGMP with no effect of NO.

View Article and Find Full Text PDF

Diabetic nephropathy is a leading cause of end-stage renal disease, characterized by endothelial dysfunction and a compromised glomerular permeability barrier. Dysregulation of the angiopoietin 1 (ANGPT1)/angiopoietin 2 (ANGPT2) signaling axis is implicated in disease progression. We recently described the discovery of an IgG antibody, O010, with therapeutic potential to elevate circulating endogenous ANGPT1, a tyrosine kinase with Ig and epidermal growth factor (EGF) homology domains-2 (TIE2) agonist.

View Article and Find Full Text PDF

The interleukin (IL)-23/T helper (Th)17 axis plays a critical role in autoimmune diseases, and there is an increasing number of biologic therapies that target IL-23 and IL-17. The transcription factor retinoic acid receptor-related orphan nuclear receptor γt (RORγt) is important for the activation and differentiation of Th17 cells and thus is an attractive pharmacologic target for the treatment of Th17-mediated diseases. A novel series of pyrazinone RORγ antagonists was discovered through hybridization of two distinct screening hits and scaffold hopping.

View Article and Find Full Text PDF

Establishing a wide therapeutic index (TI) for pre-clinical safety is important during lead optimization (LO) in research, prior to clinical development, although is often limited by a molecules physiochemical characteristics. Recent advances in the application of the innovative vibrating mesh spray-drying technology to prepare amorphous solid dispersions may offer an opportunity to achieve high plasma concentrations of poorly soluble NCEs to enable testing and establishment of a wide TI in safety pharmacology studies. While some of the amorphous solid dispersion carriers are generally recognized as safe for clinical use, whether they are sufficiently benign to enable pharmacology studies has not been sufficiently demonstrated.

View Article and Find Full Text PDF

The aim of this study was to identify an adequate formulation for a poorly soluble lead molecule (BI-A) that would achieve sufficiently high plasma concentrations after oral administration in dogs to enable a robust cardiovascular safety pharmacology assessment in telemetry-instrumented conscious dogs during lead optimization in drug discovery. A spray-dried dispersion of BI-A (BI-A-SDD) containing a 1:2 ratio of BI-A and hydroxypropyl methylcellulose acetate succinate-LF was prepared using a Büchi spray dryer B-90 (B-90). Physical form characterization, an in vitro dissolution test and a preliminary pharmacokinetic (PK) study following oral administration of BI-A-SDD were performed.

View Article and Find Full Text PDF

Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model.

View Article and Find Full Text PDF

Therapies that restore renal cGMP levels are hypothesized to slow the progression of diabetic nephropathy. We investigated the effect of BI 703704, a soluble guanylate cyclase (sGC) activator, on disease progression in obese ZSF1 rats. BI 703704 was administered at doses of 0.

View Article and Find Full Text PDF

Introduction: ICH guidelines, as well as best-practice and ethical considerations, provide strong rationale for use of telemetry-instrumented dog colonies for cardiovascular safety assessment. However, few studies have investigated the long-term stability of cardiovascular function at baseline, reproducibility in response to pharmacologic challenge, and maintenance of statistical sensitivity to define the usable life of the colony. These questions were addressed in 3 identical studies spanning 27months and were performed in the same colony of dogs.

View Article and Find Full Text PDF

Inflammation is associated with immune cells infiltrating into the inflammatory site and pain. CC chemokine receptor 1 (CCR1) mediates trafficking of leukocytes to sites of inflammation. However, the contribution of CCR1 to pain is incompletely understood.

View Article and Find Full Text PDF

Bile acids (BAs) and BA receptors, including G protein-coupled bile acid receptor 1 (GPBAR1), represent novel targets for the treatment of metabolic and inflammatory disorders. However, BAs elicit myriad effects on cardiovascular function, although this has not been specifically ascribed to GPBAR1. This study was designed to test whether stimulation of GPBAR1 elicits effects on cardiovascular function that are mechanism based that can be identified in acute ex vivo and in vivo cardiovascular models, to delineate whether effects were due to pathways known to be modulated by BAs, and to establish whether a therapeutic window between in vivo cardiovascular liabilities and on-target efficacy could be defined.

View Article and Find Full Text PDF

Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1P(X) receptor agonist) produces modest hypertension in patients (2-3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.

View Article and Find Full Text PDF

The strategic integration of in vivo cardiovascular models is important during lead optimization to enable a wide therapeutic index for cardiovascular safety. However, under what conditions (eg, species, route of administration, anesthesia) studies should be performed to drive go/no-go is open to interpretation. Two compounds, torcetrapib and a novel steroid hormone mimetic (SHM-1121X), both with off-target cardiovascular liabilities, were profiled in 4 in vivo cardiovascular models.

View Article and Find Full Text PDF

We previously reported the discovery of a novel ribosomal S6 kinase 2 (RSK2) inhibitor, (R)-5-Methyl-1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a] indole-8-carboxylic acid [1-(3-dimethylamino-propyl)-1H-benzoimidazol-2-yl]-amide (BIX 02565), with high potency (IC(50) = 1.1 nM) targeted for the treatment of heart failure. In the present study, we report that despite nanomolar potency at the target, BIX 02565 elicits off-target binding at multiple adrenergic receptor subtypes that are important in the control of vascular tone and cardiac function.

View Article and Find Full Text PDF

Introduction: Long-term administration of non-selective matrix metalloproteinase (MMP) inhibitors, such as marimastat, in humans elicits musculoskeletal syndrome (MSS), a syndrome characterized by joint damage including pain, stiffness, and inflammation. This pathology is a significant obstacle to the clinical development of MMP inhibitors and in pre-clinical models MSS can be verified only after terminal histopathology. Consequently, we devised a longitudinal and functional readout of MSS in conscious rats treated with marimastat that was validated against terminal histological assessment.

View Article and Find Full Text PDF

ABT-869 [N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea] is a novel multitargeted inhibitor of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinase family members. ABT-869 demonstrates tumor growth inhibition in multiple preclinical animal models and in early clinical trials. VEGF receptor inhibition is also associated with reversible hypertension that may limit its benefit clinically.

View Article and Find Full Text PDF

In order to enhance understanding of TRPV1 contributions to thermoregulation, we measured the effects of a TRPV1 receptor antagonist, A-889425, on thermoregulatory neurons in the medial preoptic area of the hypothalamus (mPOA) of rats while simultaneously monitoring rectal temperature (T(r)). Administration of A-889425 (4 micromol/kg, i.v.

View Article and Find Full Text PDF

ABT-869 is a novel multitargeted inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases (RTKs) with potent antiangiogenic properties that slow tumor progression. Vascular endothelial growth factor receptor blockade has been shown to produce hypertension. Atrasentan is a potent and selective endothelin (ETA) receptor antagonist that lowers blood pressure and affects tumor growth.

View Article and Find Full Text PDF

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel that functions as an integrator of multiple pain stimuli including heat, acid, capsaicin and a variety of putative endogenous lipid ligands. TRPV1 antagonists have been shown to decrease inflammatory pain in animal models and to produce limited hyperthermia at analgesic doses. Here, we report that ABT-102, which is a potent and selective TRPV1 antagonist, is effective in blocking nociception in rodent models of inflammatory, post-operative, osteoarthritic, and bone cancer pain.

View Article and Find Full Text PDF

The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced ( approximately 25%) compared with wild-types (WT).

View Article and Find Full Text PDF

Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS).

View Article and Find Full Text PDF

Levosimendan enhances cardiac contractility primarily via Ca(2+) sensitization, and it induces vasodilation through the activation of ATP-sensitive potassium channels and large conductance Ca(2+)-activated K(+) channels. However, the concentration-dependent hemodynamic effects of levosimendan and its metabolites (R)-N-(4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl)acetamide (OR-1896) and (R)-6-(4-aminophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (OR-1855) have not been well defined. Thus, levosimendan (0.

View Article and Find Full Text PDF

Levosimendan enhances cardiac contractility via Ca(2+) sensitization and induces vasodilation through the activation of ATP-dependent K(+) and large-conductance Ca(2+)-dependent K(+) channels. However, the hemodynamic effects of levosimendan, as well as its metabolites, OR-1896 and OR-1855, relative to plasma concentrations achieved, are not well defined. Thus levosimendan, OR-1896, OR-1855, or vehicle was infused at 0.

View Article and Find Full Text PDF

A new structural series of histamine H3 receptor antagonist was developed. The new compounds are based on a quinoline core, appended with a required basic aminoethyl moiety, and with potency- and property-modulating heterocyclic substituents. The analogs have nanomolar and subnanomolar potency for the rat and human H3R in various in vitro assays, including radioligand competition binding as well as functional tests of H3 receptor-mediated calcium mobilization and GTPgammaS binding.

View Article and Find Full Text PDF