Purpose: Premature birth is associated with lasting effects, including lower exercise capacity and pulmonary function, and is acknowledged as a risk factor for cardiovascular disease. The aim was to evaluate factors affecting exercise capacity in adolescents born preterm, including the cardiovascular and pulmonary responses to exercise, activity level and strength.
Methods: 21 preterm-born and 20 term-born adolescents (age 12-14 years) underwent strength and maximal exercise testing with thoracic bioimpedance monitoring.
Purpose: The long-term implications of premature birth on autonomic nervous system (ANS) function are unclear. Heart rate recovery (HRR) following maximal exercise is a simple tool to evaluate ANS function and is a strong predictor of cardiovascular disease. Our objective was to determine whether HRR is impaired in young adults born preterm (PYA).
View Article and Find Full Text PDFPreterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm.
View Article and Find Full Text PDF