When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S.
View Article and Find Full Text PDFIsoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0(-)) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0(-) virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency.
View Article and Find Full Text PDFSinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti.
View Article and Find Full Text PDFThis lab reported previously that the plating efficiency of a herpes simplex virus type 1 ICP0-null mutant was enhanced upon release from an isoleucine block which synchronizes cells to G1 phase (W. Cai and P. A.
View Article and Find Full Text PDFThe symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti favors succinate and related dicarboxylic acids as carbon sources. As a preferred carbon source, succinate can exert catabolite repression upon genes needed for the utilization of many secondary carbon sources, including the alpha-galactosides raffinose and stachyose. We isolated lacR mutants in a genetic screen designed to find S.
View Article and Find Full Text PDF