Strain in InGaN/GaN multiple-quantum well (MQW) light emitters was relaxed via nanopatterning using colloidal lithography and top-down plasma etching. Colloidal lithography was performed using Langmuir-Blodgett dip-coating of samples with silica particles (d = 170, 310, 690, 960 nm) and a Cl/N inductively coupled plasma etch to produce nanorod structures. The InGaN/GaN MQW nanorods were characterized using X-ray diffraction (XRD) reciprocal space mapping to quantify the degree of relaxation.
View Article and Find Full Text PDFOptoelectronic effects of sidewall passivation on micro-sized light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) were investigated. Moreover, significant enhancements of the optical and electrical effects by using ALD were compared with conventional sidewall passivation method, namely plasma-enhanced chemical vapor deposition (PECVD). ALD yielded uniform light emission and the lowest amount of leakage current for all µLED sizes.
View Article and Find Full Text PDFSolubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters.
View Article and Find Full Text PDFRoom temperature ionic liquids have been proposed as replacement solvents in a wide range of industrial separation processes. Here, we focus on the use of ionic liquids as solvents for the pharmaceutical compound lidocaine. We show that the solubility of lidocaine in seven common 1-n-butyl-3-methylimidazolium based ionic liquids is greatly enhanced relative to water.
View Article and Find Full Text PDF