In this Review, we explore the state of the art of biomechanical models for estimating energy consumption during terrestrial locomotion. We consider different mechanical models that provide a solid framework to understand movement energetics from the perspective of force and work requirements. Whilst such models are highly informative, they lack specificity for predicting absolute metabolic rates across a range of species or variations in movement patterns.
View Article and Find Full Text PDFUnderstanding how muscles use energy is essential for elucidating the role of skeletal muscle in animal locomotion. Yet, experimental measures of in vivo muscle energetics are challenging to obtain, so physiologically-based muscle models are often used to estimate energy use. These predictions of individual muscle energy expenditure are not often compared to indirect whole-body measures of energetic cost.
View Article and Find Full Text PDFCerebral palsy results from an upper motor neuron lesion and significantly affects skeletal muscle stiffness. The increased stiffness that occurs is partly a result of changes in the microstructural components of muscle. In particular, alterations in extracellular matrix, sarcomere length, fibre diameter, and fat content have been reported; however, experimental studies have shown wide variability in the degree of alteration.
View Article and Find Full Text PDFSkeletal muscle tissue has a highly complex and heterogeneous structure comprising several physical length scales. In the simplest model of muscle tissue, it can be represented as a one dimensional nonlinear spring in the direction of muscle fibres. However, at the finest level, muscle tissue includes a complex network of collagen fibres, actin and myosin proteins, and other cellular materials.
View Article and Find Full Text PDF