Publications by authors named "Ryan Kinloch"

The profile of selective modulation of hepatic cytochrome P450 (P450) gene expression caused by infection with the murine intestinal pathogen Citrobacter rodentium has been well characterized in multiple genetic backgrounds; yet, the mechanisms underlying this modulation are still not entirely understood. Although several studies have addressed the roles of cytokines from the innate immune system, the influence of the adaptive immune system is not known. To address this deficiency, we used mice harboring the severe combined immune deficiency (SCID) spontaneous mutation, which lack mature T and B lymphocytes and are unable to mount an acquired immune response.

View Article and Find Full Text PDF

Hepatic cytochrome P450 (P450) gene and protein expression are modulated during inflammation and infection. Oral infection of C57BL/6 mice with Citrobacter rodentium produces mild clinical symptoms while selectively regulating hepatic P450 expression and elevating levels of proinflammatory cytokines. Here, we explored the role of cytokines in the regulation of hepatic P450 expression by orally infecting tumor necrosis factor-α (TNFα) receptor 1 null mice (TNFR1-/-), interleukin-1 (IL1) receptor null mice (IL1R1-/-), and Kupffer cell depleted mice with C.

View Article and Find Full Text PDF

Mammalian cytochrome P450 2B4 (CYP2B4) is a phenobarbital-inducible rabbit hepatic monooxygenase that catalyzes the N-demethylation of benzphetamine and metabolism of numerous other compounds. To probe the interactions of the heme environment and bound benzphetamine with the dioxygen (O₂) complex of CYP2B4, homogeneous O₂ complexes of the wild-type enzyme and three mutants at sites of conserved amino acids, two on the heme distal side (T302A and E301Q) and one on the proximal side (F429H), have been prepared and stabilized at ~-50°C in mixed solvents (60-70% v/v glycerol). We report that the magnetic circular dichroism and electronic absorption spectra of wild-type oxyferrous CYP2B4, in the presence and absence of substrate, are quite similar to those of the dioxygen complex of bacterial cytochrome P450-CAM (CYP101).

View Article and Find Full Text PDF

Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques.

View Article and Find Full Text PDF

The transcription and protein expression of many cytochrome P450 (P450) genes are down-regulated in animal models of inflammation and infection. We determined previously that hepatic P450 mRNAs are selectively regulated in a mouse model of enteropathogenic bacterial infection, and that this regulation was not dependent on the lipopolysaccharide (LPS) receptor protein toll-like receptor 4 (TLR4). In the dextran sulfate sodium (DSS) model of chemically induced inflammatory bowel disease (IBD), the reduction in activities of several hepatic P450 enzymes were concluded to be partially dependent on LPS from commensal bacteria [Masubuchi Y, Horie T.

View Article and Find Full Text PDF

We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals.

View Article and Find Full Text PDF

Heme a, the metalloporphyrin cofactor unique to cytochrome c oxidases, differs from the more common heme b by two chemical modifications, a C-2 hydroxyethylfarnesyl group and a C-8 formyl group. To elucidate a role of the C-8 formyl group, we compare the heme affinity, spectroscopy, and electrochemistry of a heme a mimic, Fe(diacetyldeuterioporphyrin IX) or Fe(DADPIX), with heme b, Fe(protoporphryrin IX) or Fe(PPIX), incorporated into a designed heme protein. The [Delta7-H3m]2 protein ligand, or maquette, selected for this study contains two equivalent bis-(3-methyl-L-histidine) heme binding sites within a four-alpha-helix bundle scaffold.

View Article and Find Full Text PDF

The substitution of 1-methyl-l-histidine for the histidine heme ligands in a de novo designed four-alpha-helix bundle scaffold results in conversion of a six-coordinate cytochrome maquette into a self-assembled five-coordinate mono-(1-methyl-histidine)-ligated heme as an initial maquette for the dioxygen carrier protein myoglobin. UV-vis, magnetic circular dichroism, and resonance Raman spectroscopies demonstrate the presence of five-coordinate mono-(1-methyl-histidine) ligated ferrous heme spectroscopically similar to deoxymyoglobin. Thermodynamic analysis of the ferric and ferrous heme dissociation constants indicates greater destabilization of the ferric state than the ferrous state.

View Article and Find Full Text PDF