Microbial symbionts are broadly categorized by their impacts on host fitness: commensals, pathogens, and mutualists. However, recent investigations into the physiological basis of these impacts have revealed nuanced microbial influences on a wide range of host developmental, immunological, and physiological processes, including regeneration. Exploring these impacts begins with knowing which microbes are present.
View Article and Find Full Text PDFOne or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching.
View Article and Find Full Text PDFPhotosymbioses, intimate interactions between photosynthetic algal symbionts and heterotrophic hosts, are well known in invertebrate and protist systems. Vertebrate animals are an exception where photosynthetic microorganisms are not often considered part of the normal vertebrate microbiome, with a few exceptions in amphibian eggs. Here, we review the breadth of vertebrate diversity and explore where algae have taken hold in vertebrate fur, on vertebrate surfaces, in vertebrate tissues, and within vertebrate cells.
View Article and Find Full Text PDFÖzugur et al. recently pushed the boundaries of augmented physiology through artificial symbioses. They microinjected algal cultures into tadpole (Xenopus laevis) hearts.
View Article and Find Full Text PDFAmphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches.
View Article and Find Full Text PDFThe unique symbiosis between a vertebrate salamander, , and unicellular green alga, , involves multiple modes of interaction. These include an ectosymbiotic interaction where the alga colonizes the egg capsule, and an intracellular interaction where the alga enters tissues and cells of the salamander. One common interaction in mutualist photosymbioses is the transfer of photosynthate from the algal symbiont to the host animal.
View Article and Find Full Text PDFThe neural crest (NC) multipotent progenitor cells form at the neural plate border and migrate to diverse locations in the embryo to differentiate into many cell types. NC is specified by several embryonic pathways, however the role of noncanonical Wnt signaling in this process remains poorly defined. Daam1 is a formin family protein that is present in embryonic ectoderm at the time of NC formation and can mediate noncanonical Wnt signaling.
View Article and Find Full Text PDFDirect-developing amphibians form limbs during early embryonic stages, as opposed to the later, often postembryonic limb formation of metamorphosing species. Limb patterning is dramatically altered in direct-developing frogs, but little attention has been given to direct-developing salamanders. We use expression patterns of two genes, sox9 and col2a1, to assess skeletal patterning during embryonic limb development in the direct-developing salamander Plethodon cinereus.
View Article and Find Full Text PDFThe neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies.
View Article and Find Full Text PDFDuring embryonic development, cells of the green alga enter cells of the salamander forming an endosymbiosis. Here, using dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation.
View Article and Find Full Text PDFRhacophoridae, a family of morphologically cryptic frogs, with many genetically distinct evolutionary lineages, is understudied with respect to skeletal morphology, life history traits and skeletal ontogeny. Here we analyze two species each from two sister lineages, Taruga and Polypedates, and compare their postembryonic skeletal ontogeny, larval chondrocrania and adult osteology in the context of a well-resolved phylogeny. We further compare these ontogenetic traits with the direct-developing Pseudophilautus silus.
View Article and Find Full Text PDFThe latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques.
View Article and Find Full Text PDFThe Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and postcranial skeleton, are unknown.
View Article and Find Full Text PDFTadpoles of the monotypic Indian dancing frog family Micrixalidae have remained obscure for over 125 years. Here we report the discovery of the elusive tadpoles of Micrixalus herrei from the sand beds of a forested stream in southern Western Ghats, and confirm their identity through DNA barcoding. These actively burrowing tadpoles lead an entirely fossorial life from eggs to late metamorphic stages.
View Article and Find Full Text PDFEgg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A.
View Article and Find Full Text PDFThe salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration.
View Article and Find Full Text PDFThe reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage-forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis.
View Article and Find Full Text PDFThe vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva.
View Article and Find Full Text PDFRecent molecular phylogenies suggest the surprising reacquisition of posthatching metamorphosis within an otherwise direct-developing clade of lungless salamanders (family Plethodontidae). Metamorphosis was long regarded as plesiomorphic for plethodontids, yet the genus Desmognathus, which primarily includes metamorphosing species, is now nested within a much larger clade of direct-developing species. The extent to which the putative reacquisition of metamorphosis in Desmognathus represents a true evolutionary reversal is contingent upon the extent to which both larva-specific features and metamorphosis were actually lost during the evolution of direct development.
View Article and Find Full Text PDFAnat Rec (Hoboken)
November 2011
This work presents a refined staging table for the direct-developing red-backed salamander Plethodon cinereus, which is based on the incomplete staging system of James Norman Dent (J Morphol 1942; 71:577-601). This common species from eastern North America is a member of the species-rich lungless salamander family Plethodontidae. The staging table presented here covers several stages omitted by Dent and reveals novel developmental features of P.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
September 2012
The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of how novelty is used in recent literature, we discuss whether the evolutionary approach to homology and homoplasy initially formulated by Lankester in the 19th century informs our understanding of novelty today.
View Article and Find Full Text PDFGenetic and developmental alterations associated with the evolution of amphibian direct development remain largely unexplored. Specifically, little is known of the underlying expression of skeletal regulatory genes, which may reveal early modifications to cranial ontogeny in direct-developing species. We describe expression patterns of three key skeletal regulators (runx2, sox9, and bmp4) along with the cartilage-dominant collagen 2alpha1 gene (col2a1) during cranial development in the direct-developing anuran, Eleutherodactylus coqui.
View Article and Find Full Text PDF