Publications by authors named "Ryan K Waples"

Article Synopsis
  • Recent positive selection can lead to an accumulation of long identity-by-descent (IBD) haplotypes near specific genetic loci, which can help identify areas of adaptive evolution.
  • The proposed statistical methods aim to locate these regions, identify potential sweeping alleles, and estimate the selection coefficient (s) through innovative techniques like selection scans and parametric bootstrap for uncertainty quantification.
  • In extensive simulations, these methods outperform existing techniques, providing more accurate estimates of selection in data from European ancestry samples, demonstrating their effectiveness in studying recent adaptive evolution without needing known causal alleles or time series information.
View Article and Find Full Text PDF

Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge.

View Article and Find Full Text PDF

Local ancestry is the source ancestry at each point in the genome of an admixed individual. Inferred local ancestry is used for admixture mapping and population genetic analyses. We present FLARE (fast local ancestry estimation), a method for local ancestry inference.

View Article and Find Full Text PDF

The common Arctic-specific p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this, we aimed to investigate the effect of p.

View Article and Find Full Text PDF

Background & Aims: The sucrase-isomaltase (SI) c.273_274delAG loss-of-function variant is common in Arctic populations and causes congenital sucrase-isomaltase deficiency, which is an inability to break down and absorb sucrose and isomaltose. Children with this condition experience gastrointestinal symptoms when dietary sucrose is introduced.

View Article and Find Full Text PDF

In genomic-scale data sets, loci are closely packed within chromosomes and hence provide correlated information. Averaging across loci as if they were independent creates pseudoreplication, which reduces the effective degrees of freedom (df') compared to the nominal degrees of freedom, df. This issue has been known for some time, but consequences have not been systematically quantified across the entire genome.

View Article and Find Full Text PDF

The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago. Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.

View Article and Find Full Text PDF

Large carnivores are generally sensitive to ecosystem changes because their specialized diet and position at the top of the trophic pyramid is associated with small population sizes. Accordingly, low genetic diversity at the whole-genome level has been reported for all big cat species, including the widely distributed leopard. However, all previous whole-genome analyses of leopards are based on the Far Eastern Amur leopards that live at the extremity of the species' distribution and therefore are not necessarily representative of the whole species.

View Article and Find Full Text PDF

Knowledge of how individuals are related is important in many areas of research, and numerous methods for inferring pairwise relatedness from genetic data have been developed. However, the majority of these methods were not developed for situations where data are limited. Specifically, most methods rely on the availability of population allele frequencies, the relative genomic position of variants and accurate genotype data.

View Article and Find Full Text PDF

Whole-genome duplications have occurred in the recent ancestors of many plants, fish and amphibians. Signals of these whole-genome duplications still exist in the form of paralogous loci. Recent advances have allowed reliable identification of paralogs in genotyping-by-sequencing (GBS) data such as that generated from restriction-site-associated DNA sequencing (RADSeq); however, excluding paralogs from analyses is still routine due to difficulties in genotyping.

View Article and Find Full Text PDF

Effective population size ( ) is among the most important metrics in evolutionary biology. In natural populations, it is often difficult to collect adequate demographic data to calculate directly. Consequently, genetic methods to estimate have been developed.

View Article and Find Full Text PDF

Whole-genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping-by-sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci.

View Article and Find Full Text PDF

Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species.

View Article and Find Full Text PDF

A species' genetic diversity bears the marks of evolutionary processes that have occurred throughout its history. However, robust detection of selection in wild populations is difficult and often impeded by lack of replicate tests. Here, we investigate selection in pink salmon (Oncorhynchus gorbuscha) using genome scans coupled with inference from a haploid-assisted linkage map.

View Article and Find Full Text PDF

Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations).

View Article and Find Full Text PDF

The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introduced range, in the Asian shade annual Polygonum cespitosum. We document, over an 11-year period, the evolution of increased reproductive output as well as greater physiological and root-allocational plasticity in response to the more open, sunny conditions found in the North American range in which the species has become invasive.

View Article and Find Full Text PDF

An important use of genetic parentage analysis is the ability to directly calculate the number of offspring produced by each parent (k(i)) and hence effective population size, N(e). But what if parental genotypes are not available? In theory, given enough markers, it should be possible to reconstruct parental genotypes based entirely on a sample of progeny, and if so the vector of parental k(i) values. However, this would provide information only about parents that actually contributed offspring to the sample.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmdi1k5tjrdk8d664vs6vvnd0r2rlnpla): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once