Publications by authors named "Ryan K Alexander"

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries.

View Article and Find Full Text PDF

Metabolic pathways and inflammatory processes are under circadian regulation. Rhythmic immune cell recruitment is known to impact infection outcomes, but whether the circadian clock modulates immunometabolism remains unclear. We find that the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-γ/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under metabolically stressed conditions in mouse macrophages.

View Article and Find Full Text PDF

Repeated bouts of exercise condition muscle mitochondria to meet increased energy demand-an adaptive response associated with improved metabolic fitness. We found that the type 2 cytokine interleukin-13 (IL-13) is induced in exercising muscle, where it orchestrates metabolic reprogramming that preserves glycogen in favor of fatty acid oxidation and mitochondrial respiration. Exercise training-mediated mitochondrial biogenesis, running endurance, and beneficial glycemic effects were lost in mice.

View Article and Find Full Text PDF

Objective: Alternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses.

View Article and Find Full Text PDF

Mitochondria undergo architectural/functional changes in response to metabolic inputs. How this process is regulated in physiological feeding/fasting states remains unclear. Here we show that mitochondrial dynamics (notably fission and mitophagy) and biogenesis are transcriptional targets of the circadian regulator Bmal1 in mouse liver and exhibit a metabolic rhythm in sync with diurnal bioenergetic demands.

View Article and Find Full Text PDF

Metabolic homeostasis is achieved through coordinated regulation across several tissues. Studies using mouse genetic models have shown that perturbation of specific pathways of lipid metabolism in metabolically active tissues impacts systemic metabolic homeostasis. The use of metabolomic technologies combined with genetic models has helped to identify several potential lipid mediators that serve as metabolic messengers to communicate energy status and modulate substrate utilization among tissues.

View Article and Find Full Text PDF