Publications by authors named "Ryan J Wozniak"

Objective: In December 2014, the largest carbon monoxide (CO) poisoning in Wisconsin's history occurred at an ice arena. Following this event, the Wisconsin Environmental Public Health Tracking (WI EPHT) Program sought to improve outreach and surveillance efforts.

Methods: WI EPHT designed and distributed educational materials on CO poisoning prevention and surveyed stakeholders to gauge the effectiveness of outreach efforts.

View Article and Find Full Text PDF

Despite measures to educate the public about the dangers of elemental mercury, spills continue to occur in homes, schools, health care facilities, and other settings, endangering the public's health and requiring costly cleanup. Mercury is most efficiently absorbed by the lungs, and exposure to high levels of mercury vapor after a release can cause cough, sore throat, shortness of breath, nausea, vomiting, diarrhea, headaches, and visual disturbances (1). Children and fetuses are most susceptible to the adverse effects of mercury vapor exposure.

View Article and Find Full Text PDF

On December 13, 2014, the emergency management system in Lake Delton, Wisconsin, was notified when a male hockey player aged 20 years lost consciousness after participation in an indoor hockey tournament that included approximately 50 hockey players and 100 other attendees. Elevated levels of carbon monoxide (CO) (range = 45 ppm-165 ppm) were detected by the fire department inside the arena. The emergency management system encouraged all players and attendees to seek medical evaluation for possible CO poisoning.

View Article and Find Full Text PDF

Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants.

View Article and Find Full Text PDF

Combinatorial interactions among trans-acting factors establish transcriptional circuits that orchestrate cellular differentiation, survival, and development. Unlike circuits instigated by individual factors, efforts to identify gene ensembles controlled by multiple factors simultaneously are in their infancy. A paradigm has emerged in which the important regulators of hematopoiesis GATA-1 and GATA-2 function combinatorially with Scl/TAL1, another key regulator of hematopoiesis.

View Article and Find Full Text PDF

Epigenetic mechanisms involving dynamic changes in posttranslational histone modifications commonly control gene transcription and therefore the execution of all cellular differentiation programs. The differentiation of hematopoietic stem cells into specific progenitor cells and the diverse blood cell types represents a particularly powerful system for the study of epigenetic mechanisms. The hematopoietic system allows one to define mechanisms underlying the establishment and regulation of histone modification patterns covering entire genes and/or chromosomes at distinct stages of differentiation.

View Article and Find Full Text PDF

GATA factors are fundamental components of developmentally important transcriptional networks. By contrast to common mechanisms in which transacting factors function directly at promoters, the hematopoietic GATA factors GATA-1 and GATA-2 often assemble dispersed complexes over broad chromosomal regions. For example, GATA-1 and GATA-2 occupy five conserved regions over approximately 100 kb of the Gata2 locus in the transcriptionally repressed and active states, respectively, in erythroid cells.

View Article and Find Full Text PDF

Using an integrated approach of epigenomic scanning and gene expression profiling, we found aberrant methylation and epigenetic silencing of a small neighborhood of contiguous genes-the HOXA gene cluster in human breast cancer. The observed transcriptional repression was localized to approximately 100 kb of the HOXA gene cluster and did not extend to genes located upstream or downstream of the cluster. Bisulfite sequencing, chromatin immunoprecipitation, and quantitative reverse transcription-PCR analysis confirmed that the loss of expression of the HOXA gene cluster in human breast cancer is closely linked to aberrant DNA methylation and loss of permissive histone modifications in the region.

View Article and Find Full Text PDF

Epigenetic control participates in processes crucial in mammalian development, such as X-chromosome inactivation, gene imprinting, and cell type-specific gene expression. We provide evidence that the p53-inducible gene 14-3-3sigma is a new example of a gene important to human cancer, where epigenetic mechanisms participate in the control of normal cell type-specific expression, as well as aberrant gene silencing in cancer cells. Like a previously identified cell type-specific gene maspin, 14-3-3sigma is a p53-inducible gene; however, it participates in G2/M arrest in response to DNA-damaging agents.

View Article and Find Full Text PDF

Introduction: Desmocollin 3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and a principle component of desmosomes. Desmosomal proteins such as DSC3 are integral to the maintenance of tissue architecture and the loss of these components leads to a lack of adhesion and a gain of cellular mobility. DSC3 expression is down-regulated in breast cancer cell lines and primary breast tumors; however, the loss of DSC3 is not due to gene deletion or gross rearrangement of the gene.

View Article and Find Full Text PDF

p300/CBP-associated factor (PCAF) is a coactivator of the tumor suppressor, p53. PCAF participates in p53's transactivation of target genes through acetylation of both bound p53 and histones within p53 target promoters. Using microarrays, we discovered that PCAF itself is induced by p53 in a panel of breast tumor cell lines.

View Article and Find Full Text PDF

p53 is an important transcriptional regulator that is frequently mutated in cancer. Gene-profiling experiments of breast cancer cells infected with wt p53 revealed both MASPIN and desmocollin 3 (DSC3) to be p53-target genes, even though both genes are silenced in association with aberrant cytosine methylation of their promoters. Despite the transcriptional repression of these genes by aberrant DNA methylation, restoration of p53 resulted in the partial reactivation of both genes.

View Article and Find Full Text PDF

The nucleotide 5-methylcytosine is involved in processes crucial in mammalian development, such as X-chromosome inactivation and gene imprinting. In addition, cytosine methylation has long been speculated to be involved in the establishment and maintenance of cell type specific expression of developmentally regulated genes; however, it has been difficult to identify clear examples of such genes, particularly in humans. Here we provide evidence that cytosine methylation of the maspin gene (SERPINB5) promoter controls, in part, normal cell type specific SERPINB5 expression.

View Article and Find Full Text PDF