Publications by authors named "Ryan J Winston"

Article Synopsis
  • Current research indicates that knowledge about how PFAS (per- and polyfluoroalkyl substances) behave in urban stormwater biofilter systems is lacking.
  • Various PFAS chemicals were frequently detected in both bioretention media and forebay sediments, with unknown PFAS precursors being found in even higher concentrations than known ones.
  • There is no clear relationship between PFAS concentrations and the depth of the filter media, suggesting that solely relying on shallow biofilters may not be effective for managing stormwater PFAS contamination.
View Article and Find Full Text PDF

Mosquitoes (Diptera: Culicidae) are one of the most impactful pests to human society, both as a nuisance and a potential vector of human and animal pathogens. Mosquito larvae develop in still aquatic environments. Eliminating these habitats near high human density or managing them to reduce the suitability for mosquitoes will reduce mosquito populations in these human environments and decrease the overall negative impact of mosquitoes on humans.

View Article and Find Full Text PDF

To address the deleterious impacts of excess soil erosion from the construction sites, the United States Clean Water Act requires that erosion and sediment control measures (ESCs) be implemented on construction projects disturbing more than 0.4 ha. Inlet protection devices (IPDs) are a common ESC utilized on construction projects to reduce the amount of sediment entering storm sewers.

View Article and Find Full Text PDF

Exposed soils associated with active construction sites provide opportunities for erosion and sediment transport during storm events, introducing risks associated with excess sediment to downstream infrastructure and aquatic biota. A better understanding of the drivers of sediment transport in construction site runoff is needed to improve the design and performance of erosion and sediment control measures (ESCMs). Eleven monitoring locations on 3 active road construction sites in central Ohio were established to characterize runoff quality from points of concentrated flow during storm events.

View Article and Find Full Text PDF

The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores.

View Article and Find Full Text PDF

Road runoff contributes an array of pollutants which degrade the quality of receiving waters. Sediment conveyed in runoff results in loss of habitat and loss of reservoir capacity, among other undesirable impacts. To select and design stormwater control measures (SCMs), the sediment particle size distribution (PSD) is needed to quantify the required hydraulic retention time for particle settling and to understand what other treatment processes (e.

View Article and Find Full Text PDF

Identifying sources of pollutants in watersheds is critical to accurately predicting stormwater quality. Many existing software used to model stormwater quality rely on decades-old data sets which may not represent current runoff quality in the United States. Because of environmental regulations promulgated at the federal level over previous decades, there is a need to understand long-term trends (and potential shifts) in runoff quality to better parameterize models.

View Article and Find Full Text PDF

Stormwater control measures (SCMs) are employed to reduce the multitude of deleterious impacts of urban runoff on receiving waters. Sediment accumulation in infiltration-based SCMs can clog these systems, resulting in lack of hydraulic function and reduced stormwater treatment efficacy. As such, pretreatment devices, such as forebays, filter strips, or catch basin sumps, are typically employed upstream of SCMs to remove sediment and prolong maintenance intervals.

View Article and Find Full Text PDF

Urban stormwater conveys dissolved pollutants, micropollutants, particulate matter, natural debris, and anthropogenic macrodebris to receiving waters. Though it is widely recognized that anthropogenic macrodebris mobilized by stormwater contributes to global pollution management issues (e.g.

View Article and Find Full Text PDF

Urban stormwater is a substantial source of non-point source pollution. Despite considerable monitoring efforts, little is known about stormwater quality in certain geographic regions. These spatial gaps induce uncertainty when extrapolating data and reduce model calibration capabilities, thereby limiting pollutant load reduction strategies.

View Article and Find Full Text PDF

The increased use of bioretention facilities as a low impact development measure for treating stormwater runoff underscores the need to further understand their long-term function. Eventually, bioretention filter media must be (partly) replaced and disposed of at the end of its functional lifespan. While there are several studies of metal accumulation and distributions in bioretention media, less is known about organic pollutant pathways and accumulation in these filters.

View Article and Find Full Text PDF

Floating treatment wetlands (FTWs), artificial systems constructed from buoyant mats and planted with emergent macrophytes, represent a potential retrofit to enhance the dissolved nutrient removal performance of existing retention ponds. Treatment occurs as water flows through the dense network of roots suspended in the water column, providing opportunities for pollutants to be removed via filtration, sedimentation, plant uptake, and adsorption to biofilms in the root zone. Despite several recent review articles summarizing the growing body of research on FTWs, FTW design guidance and strategies to optimize their contributions to pollutant removal from stormwater are lacking, due in part to a lack of statistical analysis on FTW performance at the field scale.

View Article and Find Full Text PDF

Many natural and anthropogenic factors cause degradation of urban stormwater quality, resulting in negative consequences to receiving waters. In order to improve water quality models at a variety of scales, accurate estimates of pollutant (nutrients, total suspended solids, and heavy metal) concentrations are needed using potential explanatory variables. To this end, a meta-analysis was performed on aggregated stormwater quality data from the published literature from 360 urban catchments worldwide to understand how urban land use and land cover (LULC), climate (i.

View Article and Find Full Text PDF

While wastewater has been found to harbor SARS-CoV-2, the persistence of SARSCoV-2 in stormwater and potential transmission is poorly understood. It is plausible that the virus is detectable in stormwater samples where human-originated fecal contamination may have occurred from sources like sanitary sewer overflows, leaky wastewater pipes, and non-human animal waste. Because of these potential contamination pathways, it is possible that stormwater could serve as an environmental reservoir and transmission pathway for SARS-CoV-2.

View Article and Find Full Text PDF

Permeable pavements are increasingly implemented to mitigate the negative hydrologic outcomes associated with impervious surfaces. However, the hydraulic function of permeable pavements is hindered by clogging in their joint openings, and systematic maintenance is needed to ensure hydraulic functionality throughout the design lifespan of these systems. To quantify the effectiveness of various maintenance measures, surface infiltration rates (SIRs) were measured before and after five different maintenance techniques were applied to five permeable interlocking concrete pavements (PICPs) in central Ohio, USA.

View Article and Find Full Text PDF

Bioretention systems are widely used green infrastructure elements that utilize engineered bioretention soil media (BSM) for stormwater capture and treatment. Conventional bioretention soil media, which typically consists of sand, sandy loam, loamy sand or topsoil amended with compost, has limited capacity to remove and may leach some stormwater pollutants. Alternative engineered amendments, both organic and inorganic, have been tested to supplement BSM.

View Article and Find Full Text PDF

The discharge of excess nutrients to surface waters causes eutrophication, resulting in algal blooms, hypoxia, degraded water quality, reduced and contaminated fisheries, threats to potable water supplies, and decreases in tourism, cultural activities, and coastal economies. An understanding of the contribution of urban runoff to eutrophication is needed to inform management strategies. More broadly, the seasonality in nutrient concentrations and loads in urban runoff needs further analysis since algal blooms and hypoxia are seasonal in nature.

View Article and Find Full Text PDF

Cities have turned to permeable pavements as one tool to mitigate the detrimental effects of urban runoff. Permeable pavements permit rainfall to infiltrate through a series of aggregate layers, where pollutants are filtered out before the water discharges via an underdrain or exfiltrates into native soils. This study reports on the water quality performance of a parking area retrofitted with permeable interlocking concrete pavement in Vermilion, OH, USA.

View Article and Find Full Text PDF

Permeable pavement is an effective tool for improving stormwater hydrology and water quality when sited over soils with high infiltration rates, but its efficacy over less permeable soils is uncertain. This study examined permeable pavement performance when built over a low-conductivity, clay soil. Four parking stalls (50 m total area) were retrofitted with permeable interlocking concrete pavement (PICP) to treat 15.

View Article and Find Full Text PDF

Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration.

View Article and Find Full Text PDF

The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: