Publications by authors named "Ryan J Stoddard"

Although the multiple-component (MC) blend strategy has been frequently used as a very effective way to improve the performance of organic solar cells (OSCs), there is a strong need to understand the fundamental working mechanism and material selection rule for achieving optimal MC-OSCs. Here we present the 'dilution effect' as the mechanism for MC-OSCs, where two highly miscible components are molecularly intermixed. Contrary to the aggregation-induced non-radiative decay, the dilution effect enables higher luminescence quantum efficiencies and open-circuit voltages (V) in MC-OSCs via suppressed electron-vibration coupling.

View Article and Find Full Text PDF

Photovoltaic (PV) device development is much more expensive and time-consuming than the development of the absorber layer alone. This Perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective 1 Sun illumination are indicators of a material's ability to achieve high V and J.

View Article and Find Full Text PDF

Development of large bandgap (1.80-1.85 eV E) perovskite is crucial for perovskite-perovskite tandem solar cells.

View Article and Find Full Text PDF

High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation.

View Article and Find Full Text PDF

Electrospinning is a simple, low-cost and versatile approach to fabricate multifunctional materials useful in drug delivery and tissue engineering applications. Despite its emergence into other manufacturing sectors, electrospinning has not yet made a transformative impact in the clinic with a pharmaceutical product for use in humans. Why is this the current state of electrospun materials in biomedicine? Is it because electrospun materials are not yet capable of overcoming the biological safety and efficacy challenges needed in pharmaceutical products? Or, is it that technological advances in the electrospinning process are needed? This review investigates the current state of electrospun materials in medicine to identify both scientific and technological gaps that may limit clinical translation.

View Article and Find Full Text PDF