Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the lateral habenula (LHb) has been linked to negative valence, but its role in regulating the balance between engaged reward seeking and disengaged behavioral states remains unclear. Here, we show that LHb neural activity is tonically elevated during minutes-long periods of disengagement from reward-seeking behavior, both when due to repeated reward omission (negative valence) and when sufficient reward has been consumed (positive valence).
View Article and Find Full Text PDFMajor depressive disorder can manifest as different combinations of symptoms, ranging from a profound and incapacitating sadness, to a loss of interest in daily life, to an inability to engage in effortful, goal-directed behavior. Recent research has focused on defining the neural circuits that mediate separable features of depression in patients and preclinical animal models, and connections between frontal cortex and brainstem neuromodulators have emerged as candidate targets. The development of methods permitting recording and manipulation of neural circuits defined by connectivity has enabled the investigation of prefrontal-neuromodulatory circuit dynamics in animal models of depression with exquisite precision, a systems-level approach that has brought new insights by integrating these fields of depression research.
View Article and Find Full Text PDFThis review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically-defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein-coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing.
View Article and Find Full Text PDFClinical researchers have tracked patients with early life trauma and noted generalized anxiety disorder, unipolar depression, and risk-taking behaviors developing in late adolescence and into early adulthood. Animal models provide an opportunity to investigate the neural and developmental processes that underlie the relationship between early stress and later abnormal behavior. The present model used repeated exposure to 2,3,5-trimethyl-3-thiazoline (TMT), a component of fox feces, as an unconditioned fear-eliciting stimulus in order to induce stress in juvenile rats aged postnatal day (PND) 23 through 27.
View Article and Find Full Text PDFTraditionally, the signaled avoidance (SA) paradigm has been used in an attempt to better understand human phobia. Animal models of this type have been criticized for ineffectively representing phobia. The SA model characterizes phobia as an avoidance behavior by presenting environmental cues, which act as warning signals to an aversive stimulus (ie, shock).
View Article and Find Full Text PDF