Publications by authors named "Ryan Henderson"

Background: Chronic pain and opioid use disorder (OUD) individually represent a risk to health and well-being. Concerningly, there is evidence that they are frequently co-morbid. While few treatments exist that simultaneously target both conditions, preliminary work has supported the feasibility of an integrated behavioral treatment targeting pain interference and opioid misuse.

View Article and Find Full Text PDF

The introduction of machine learning to small molecule research- an inherently multidisciplinary field in which chemists and data scientists combine their expertise and collaborate - has been vital to making screening processes more efficient. In recent years, numerous models that predict pharmacokinetic properties or bioactivity have been published, and these are used on a daily basis by chemists to make decisions and prioritize ideas. The emerging field of explainable artificial intelligence is opening up new possibilities for understanding the reasoning that underlies a model.

View Article and Find Full Text PDF

Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose.

View Article and Find Full Text PDF

We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude).

View Article and Find Full Text PDF

Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other.

View Article and Find Full Text PDF

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase).

View Article and Find Full Text PDF

Mal11 catalyzes proton-coupled maltose transport across the plasma membrane of Saccharomyces cerevisiae. We used structure-based design of mutants and a kinetic analysis of maltose transport to determine the energy coupling mechanism of transport. We find that wildtype Mal11 is extremely well coupled and allows yeast to rapidly accumulate maltose to dangerous levels, resulting under some conditions in self-lysis.

View Article and Find Full Text PDF

We review the way in which atomic tetrahedra composed of metallic elements pack naturally into fused icosahedra. Orthorhombic, hexagonal, and cubic intermetallic crystals based on this packing are all shown to be united in having pseudo-fivefold rotational diffraction symmetry. A unified geometric model involving the 600-cell is presented: the model accounts for the observed pseudo-fivefold symmetries among the different Bravais lattice types.

View Article and Find Full Text PDF

The crystal chemistry of the ternary Au-Cr-Zn alloy was studied by means of synthesis, single crystal X-ray diffraction, and electron structure calculations. While the compound CrZn(∼17) represents the binary end-point of the homogeneity range, the inclusion of Au proves to be very site specific, and at the limiting composition Au10Cr4Zn89 the structure is completely ordered. The crystallographic site occupancy pattern calculated by the Local Density Approximation (LDA)-Density Functional Theory (DFT) parametrized extended Hückel (eH) Mulliken charge populations in Au10Cr4Zn89 agrees very well with the experimentally found site occupancy pattern.

View Article and Find Full Text PDF

Activation of CD4(+) T cells helps to establish and maintain immune responses. During infection with lymphocytic choriomeningitis virus (LCMV) clone 13, the CD4(+) T-cell responses are lost. In this study, we were interested in the nature of the CD4(+) T-cell responses following infection with LCMV clone 13.

View Article and Find Full Text PDF

The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein-protein interactions. To gain a better understanding of the scope of linker histone involvement in protein-protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts.

View Article and Find Full Text PDF

An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3(+)CCR6(+) memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response.

View Article and Find Full Text PDF

The two articles presented previously in this volume provide state-of-the-art reviews of the etiology, epidemiology, screening and treatment of substance use disorder (SUD). This article identifies next steps in research and development for understanding and treating SUD in Operation Enduring Freedom/Operation Iraqi Freedom service members and veterans. Four promising areas are reviewed: advances in psychopharmacological treatment of SUD, innovations in behavioral treatments, the use of technological advances for the screening and treatment of SUD, and integration of treatment services.

View Article and Find Full Text PDF

Diagnosis of tuberculosis often relies on the ex vivo IFN-γ release assays QuantiFERON-TB Gold In-Tube and T-SPOT.TB. However, understanding of the immunological mechanisms underlying their diagnostic use is still incomplete.

View Article and Find Full Text PDF

We characterized twelve SIV-infected Chinese-origin rhesus macaques for their entire MHC class I allele composition. Several MHC class I alleles were present in animals with varying outcomes of infections, either elite control or normal progression to AIDS disease. These MHC class I alleles may prove interesting targets for additional characterization.

View Article and Find Full Text PDF

Objective: Relatively little research has investigated the connection between religiosity and physical child abuse risk. Certain aspects, such as specific religious orientation or beliefs, and cognitive schema, such as socially conformist beliefs, may account for the connection that some have claimed increase religious parents' abuse potential. The current study examined whether greater Extrinsic religiosity, but not Intrinsic religiosity, was associated with elevated physical abuse potential.

View Article and Find Full Text PDF

Background: Haptoglobin is a plasma protein that scavenges haemoglobin during haemolysis. Phospholipid Transfer Protein (PLTP) transfers lipids from Low Density Lipoproteins (LDL) to High Density Lipoproteins (HDL). PLTP is involved in the pathogenesis of atherosclerosis which causes coronary artery disease, the leading cause of death in North America.

View Article and Find Full Text PDF

Aim: To investigate how different formulations of Amphotericin-B (Amp-B) affect the activity of phospholipid transfer protein (PLTP) when incubated with hyperlipidemic and normolipidemic plasma at physiological temperature (37 degrees C).

Methods: Six hyperlipidemic and six normolipidemic plasma samples were collected and tested for protein concentration. Equivalent protein levels (25 microg) were then tested for PLTP activity using an in vitro established kit at physiological temperature (37 degrees C).

View Article and Find Full Text PDF